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Summary

Multi-class continuum traffic flow models: Analysis and
simulation methods

Traffic flow modelling has developed rapidly over the last two decades. In many ap-
plications, the models are combined with measured data concerning the current traffic
state and with fast computational methods. Because of this combination it has become
possible to make accurate and useful short term predictions about the evolution of the
traffic state. The predictions can be used to inform and advise road users, for example
about alternative routes. Furthermore, the predictions can be used to control traffic in
an efficient way in order to prevent or reduce delays. The predictions are in particular
useful in the case of exceptional circumstances such as an accident, extreme weather
conditions or festivities. In such cases historical data is less useful and routes that are
optimal under normal circumstances are not optimal anymore.

The main contribution of this dissertation is the development and analysis of a new
traffic flow model and accompanying numerical methods. This model, Fastlane, takes
into account the differences between types of vehicles (for example passenger cars and
trucks) and driving styles. Furthermore, the model is well suited to make useful short
term predictions for the traffic state on a network of main roads. This is due to the
development of efficient numerical methods.

This summary largely follows the outline of this dissertation: first the literature review
is discussed, followed by the model development and analysis. We then make a short
side step to discuss the Lagrangian coordinate system that has proven useful in the mo-
del analysis. Furthermore, the Lagrangian coordinate system is subsequently applied
in numerical methods for homogeneous roads and networks of inhomogeneous roads.
Finally, we present recommendations for both practice and science.

Model tree

The literature review in Chapter 2 is largely based on a newly developed genealogy
of traffic flow models, see also Appendix A. This model tree shows how such models
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have developed since their introduction in the 1930’s. We distinguish four families:
the fundamental relation, microscopic, mesoscopic and macroscopic models. The fun-
damental relation describes the (static) relation between the velocity of a vehicle and
the distance to its leader. The other models describe how this relation develops over
time and space, and how these dynamics are described, differs per family. Microscopic
models describe and trace the movement of individual vehicles. Macroscopic models
aggregate many vehicles and their ‘average’ behaviour (velocity, following distance,
time headway) is described. The aggregation level in the mesoscopic family is between
that of microscopic and macroscopic models.

Within each family many different branches are distinguished. Furthermore, connec-
tions can be made between the families. By analysis of the model tree we identify
the following trends: 1) convergence to generic models that include all models in a
certain branch, 2) extensions and adaptations of the prototype macroscopic model (the
LWR model) to better reproduce relevant phenomena, 3) extensions of almost all types
of models to model heterogeneity among vehicles and drivers, and 4) the develop-
ment of hybrid models that combine the advantages of (for example) microscopic and
macroscopic models. In the model development we combine these trends in a ma-
croscopic model with heterogeneity. A small adaptation then gives a generic model.
Subsequently, a new formulation of the model creates possibilities for the development
of new hybrid models.

Model development and analysis

In Chapter 4 we develop the (macroscopic) Fastlane model based on the modeling
principles that we introduce in Chapter 3. The model includes multiple classes which
express the heterogeneity between vehicles and drivers. The model is formulated in a
broad way, but it can, for example, distinguish between, on the one hand, passenger
cars which are relatively short and have a high maximum velocity and short headways
and, on the other hand, trucks which are long and have low maximum velocities and
long headways. The heterogeneity is introduced in Fastlane mainly via pce (passenger
car equivalent) values. The pce values express, per class, how much one vehicle of that
class contributes to the traffic flow in comparison to one passenger car. For example, a
large truck has a high impact on the traffic flow and thus a high pce value. A van has
a somewhat smaller pce value, but it is larger than that of a passenger car. Fastlane is
unique in that, in contrast to other multi-class kinematic wave models, the pce values
depend on the actual traffic state. Therefore, the pce values are based on a simple
microscopic model. This ensures that at high velocities and low densities, the pce
values of trucks are relatively low and thus they contribute little to the total traffic
flow. However, in (heavy) congestion (low velocities, high densities), trucks take up
the same road space as multiple passenger cars. In this case the pce values of trucks
are high and they contribute relatively a lot to the total flow. The heterogeneity ensures
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that, even though the model is based on a simple kinematic wave model, it can describe
and reproduce complex phenomena.

The Fastlane model is generalized in Chapter 5. We show that the generalized mo-
del includes all kinematic wave models known from the literature. The generalization
enables us to compare the models in Chapter 7 with respect to the requirements that
are formulated in Chapter 3. The requirements are related to for example, a consis-
tent model formulation, the speed and direction of information (characteristic velocity,
anisotropy) and intuitive relations between a change in the number of vehicles and a
change in their velocity. We show that Fastlane and only one other model are the only
models that satisfy all requirements. Furthermore, a step-by-step plan is introduced
that can be applied to analyse any other (newly developed) multi-class kinematic wave
model with respect to the requirements. For this model analysis, we need a new for-
mulation of the generic model, which is introduced in Chapter 6.

Lagrangian coordinate system

Chapter 6 is the core chapter of this dissertation. The generalized model is reformu-
lated in the Lagrangian coordinate system. Lagrangian coordinates travel with the
vehicles of the fastest class. This new formulation makes it easier to analyse whether
or not information goes faster than vehicles (anisotropy). This is because information
travels with characteristic velocities which, in turn, are equal to the eigenvalues of a
certain system of equations. However, the eigenvalues of that system in the traditional
formulation are difficult to determine exactly, and if there are many classes it may even
be impossible. The Lagrangian formulation offers the advantage that it is only neces-
sary to determine the sign of the eigenvalues. In contrast to determining the value
itself, it is possible to determine the sign of the eigenvalue. Finally, the Lagrangian
coordinates are applied to develop more efficient numerical methods.

Numerical methods and road networks

In order to apply a traffic flow model like Fastlane in a simulation, the continuous
equations need to be discretized and solved. In Chapter 8 we develop the accompa-
nying numerical methods for kinematic wave models of one class. In Chapter 9 the
methods are extended to models with multiple classes. Furthermore, in Chapter 8 we
develop measures to qualify the accuracy of traffic flow models, using measures that
are especially relevant for traffic flow.

The Lagrangian coordinate system offers advantages for the accuracy and speed of the
simulation. In traditional numerical methods for traffic flow models, time and space are
divided into discrete units (time steps and grid cells). The solution of the equations is
then computed at each time step and in each grid cell. The disadvantage of this method
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is that information can go both from a grid cell to its downstream neighboring grid
cell (in free flow) or it can go to its upstream neighboring grid cell (in congestion).
This results in relatively slow computation and inaccurate solutions. However, once
we know that, in a certain model, information does not travel faster than vehicles,
the Lagrangian coordinate system can be used to develop efficient numerical methods.
Instead of dividing space into grid cells, vehicles are divided into groups. Because
information does not travel faster than the vehicles or vehicle groups, information only
travels from one group to its following group and never to its leading group. This
results in fast and accurate computational methods.

In Chapter 10 we extend the methods from Chapter 8 and 9 to networks (so as to per-
form simulations on networks of roads). Therefore, we add discretisations of node
models that describe inflow and outflow boundaries, on and off ramps and other in-
homogeneities. These other inhomogeneities, such as a decrease or increase in the
number of lanes, or a change in the speed limit, are expressed in temporary or local
changes in the fundamental relation. The traditional numerical methods are in gene-
ral more easy to extend with these node models, but also node models based on the
Lagrangian coordinate system are possible and lead to satisfying results.

Recommendations

We conclude this summary with two types of recommendations: recommendations
for applications of the results, including the Fastlane model, and recommendations for
future research.

Applications

Fastlane is especially well suited for applications on networks of main roads with many
different types of vehicles. For example, it can be applied for state estimation, and
for prediction and control of road networks. Two colleagues discuss these applica-
tions in their dissertations: Yuan (2013) introduces methods for state estimation using
Fastlane in Lagrangian coordinates, Schreiter (2013) introduces control methods that
apply Fastlane for the road network in the port of Rotterdam. It is shown that Fastlane
yields fast and accurate results which are superior to results achieved with the simula-
tion tools that are currently applied in practice.

In cases where Fastlane does not satisfy the requirements for a certain application, the
model tree (Chapter 2, Appendix A) or the step-by-step plan for the assessment of
multi-class kinematic wave models (Chapter 7) can be applied to find another suitable
model. The step-by-step plan especially provides an efficient method to distinguish
qualitatively suitable models from unsuitable models. The advantage of the step-by-
step plan is that it becomes unnecessary to perform (usually costly) calibration to all
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models. The calibration to the qualitatively good models can then be performed by
applying the accuracy measures that are proposed in Chapter 8.

Finally, the numerical methods for homogeneous roads and for networks of inhomo-
geneous roads (Chapter 8—10) can also be applied to other models than Fastlane.

Future research

We distinguish three main areas for future research: the model tree, the Fastlane model
and the accuracy of numerical methods.

The model tree (Chapter 2, Appendix A) provides clues for the future development of
traffic flow models. Firstly, generic models can be developed that include even more
models than the current generic models. The generic models can in turn be applied
to qualitatively assess the models that fit within the generic model. Secondly, hybrid
models appear to be suitable to combine the advantages of the different types of mo-
dels. This development can be continued for example by application of the Lagrangian
formulation (Chapter 6) and by combining models with only one class with multi-class
models.

The Fastlane model (Chapter 4) can be developed further. For example, the current
method to determine pce values in free flow is not very realistic. This can be improved.
Furthermore, the numerical methods can be improved further. The node models in
Lagrangian coordinates deserve especial attention (Chapter 10).

The measures to determine the accuracy of numerical methods (Chapter 8) can be ex-
tended further. After small adaptations, they are also suitable to compare, for example,
simulation results with measured traffic states. This innovation provides new and better
methods for calibrating traffic flow models.






Samenvatting

Continuiim verkeersstroommodellen met meerdere
klassen: Analyse en simulatiemethoden

Verkeersstroommodellen hebben zich de afgelopen twee decennia snel ontwikkeld.
In veel toepassingen worden zulke modellen gecombineerd met meetgegevens over
de huidige verkeerstoestand en met snelle rekenmethoden. Door deze combinatie is
het mogelijk geworden om nauwkeurige en bruikbare korte-termijn voorspellingen te
doen over hoe de verkeerstoestand zich zal ontwikkelen. De voorspellingen kunnen
gebruikt worden om weggebruikers te informeren en adviseren, bijvoorbeeld over al-
ternatieve routes. Bovendien kunnen de voorspellingen gebruikt worden om op een
efficiénte manier het verkeer te regelen om zo vertragingen te voorkomen of vermin-
deren. De voorspellingen zijn vooral nuttig bij bijzondere omstandigheden zoals een
ongeluk, extreme weersomstandigheden of evenementen. In zulke gevallen zijn his-
torische gegevens minder bruikbaar en routes die optimaal zijn onder normale om-
standigheden, zijn opeens niet meer optimaal.

De belangrijkste bijdrage van dit proefschrift is de ontwikkeling en analyse van een
nieuw verkeersstroommodel en bijbehorende numerieke methoden. Dit model,
Fastlane, houdt rekening met verschillen tussen soorten voertuigen (bijvoorbeeld per-
sonenauto’s en vrachtwagens) en rijstijlen. Bovendien is het geschikt om bruikbare
korte-termijn voorspellingen te maken voor de verkeerstoestand op een netwerk van
hoofdwegen. Dit komt door de ontwikkeling van efficiénte numerieke methoden,

Deze samenvatting volgt in grote lijnen de opbouw van dit proefschrift: ten eerste
wordt het literatuuronderzoek besproken, daarna volgt de modelontwikkeling en
-analyse. Dan maken we een korte uitstap naar het Lagrangiaanse codrdinatensysteem
dat bruikbaar is gebleken in de modelanalyse. Bovendien wordt het Lagrangiaanse
coordinatensysteem vervolgens toegepast in de numerieke methoden voor homogene
wegen en netwerken van inhomogene wegen. Als laatste volgen aanbevelingen voor
zowel de praktijk als de wetenschap.
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Stamboom

Het literatuuroverzicht in Hoofdstuk 2 is grotendeels gebaseerd op een nieuw ontwik-
kelde stamboom van verkeersstroommodellen, zie ook Appendix A. De stamboom laat
zien hoe deze modellen zich hebben ontwikkeld sinds hun eerste introductie in de jaren
’30 van de twintigste eeuw. We onderscheiden vier families van modellen: de fun-
damentele relatie, microscopische, mesoscopische en macroscopische modellen. De
fundamentele relatie beschrijft het (statische) verband tussen snelheid van een voer-
tuig en de afstand tot zijn voorligger. De andere modellen beschrijven hoe dit verband
zich ontwikkelt over de tijd en ruimte. Hoe deze dynamica wordt beschreven, is per
familie verschillend. Enerzijds beschrijven en volgen microscopische modellen de be-
weging van individuele voertuigen. Anderzijds aggregeren macroscopische modellen
vele voertuigen en wordt hun ‘gemiddelde’ gedrag (snelheid, volgafstand, volgtijd)
beschreven. Het aggregatieniveau in de mesoscopische familie zit tussen dat van de
miscroscopische en macroscopische familie in.

Binnen iedere familie worden vele verschillende takken onderscheiden. Bovendien
zijn er verbanden te leggen tussen de families. Door analyse van de stamboom iden-
tificeren we de volgende trends: 1) convergentie naar generieke modellen die alle
modellen in een bepaalde tak omvatten, 2) uitbreidingen en aanpassingen van het
oer-macroscopische model (het LWR kinematische golf-model) om beter relevante
fenomenen te kunnen reproduceren, 3) uitbreidingen van bijna alle soorten modellen
om heterogeniteit tussen voertuigen en bestuurders te modelleren, en 4) de vorming van
hybride modellen die de voordelen van (bijvoorbeeld) microscopische en macroscopi-
sche modellen combineren. In de modelontwikkeling combineren we deze trends in
een macroscopisch model met heterogeniteit. Een kleine aanpassing van het model
levert een generiek model. Vervolgens levert een nieuwe formulering van het model
mogelijkheden voor de ontwikkeling van nieuwe hybride modellen.

Modelontwikkeling en -analyse

In Hoofdstuk 4 ontwikkelen we het (macroscopisch) Fastlanemodel op basis van mod-
elleerprincipes die we in Hoofdstuk 3 introduceren. Het model kent meerdere klassen
waardoor de heterogeniteit tussen typen voertuigen en bestuurders tot uitdrukking
komt. Het model is algemeen geformuleerd, maar kan bijvoorbeeld onderscheid maken
tussen enerzijds personenauto’s die relatief kort zijn, een hoge maximumsnelheid heb-
ben en korte volgtijden en anderzijds vrachtwagens die lang zijn en een lage max-
imumsnelheid en lange volgtijden hebben. De heterogeniteit wordt in Fastlane met
name geintroduceerd via pce-waarden (‘passenger car equivalent’-waarden). De pce-
waarden drukken, per klasse, uit hoeveel één voertuig van die klasse bijdraagt aan de
verkeersstroom ten opzichte van één personenauto. Een grote vrachtwagen heeft bij-
voorbeeld een grote invloed op de verkeersstroom en dus een hoge pce-waarde. Een
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bestelbus heeft een wat kleinere pce-waarde, maar de waarde is groter dan die van
een personenauto. Het bijzondere aan Fastlane is dat, in tegenstelling tot andere kine-
matische golf-modellen met meerdere klassen, de pce-waarden afhankelijk zijn van de
actuele verkeerstoestand. Daartoe worden de pce-waarden gebaseerd op een eenvoudig
microscopisch model. Dit zorgt ervoor dat bij hoge snelheden en lage dichtheden, de
pce-waarden van vrachtwagens relatief laag zijn en ze dus relatief weinig bijdragen aan
de totale verkeersstroom. Echter, in (zware) congestie (lage snelheden, hoge dichthe-
den), nemen vrachtwagens dezelfde ruimte in als meerdere personenauto’s. In dit geval
zijn de pce-waarden van vrachtwagens dus hoog en dragen ze relatief veel bij aan de
totale stroom. De heterogeniteit zorgt er vervolgens voor dat, ondanks dat het model
gebaseerd is op een eenvoudig kinematische golf-model, het complexe fenomenen kan
beschrijven en reproduceren.

Het Fastlane model wordt gegeneraliseerd in Hoofdstuk 5. We laten zien dat het ge-
generaliseerde model alle kinematische golf-modellen met meerdere klassen omvat
die bekend zijn uit de literatuur. De generalisatie stelt ons in staat om in Hoofdstuk
7 de modellen te vergelijken op basis van kwalitatieve vereisten die in Hoofdstuk 3
worden opgesteld. De vereisten hebben onder andere te maken met een consistente
modelformulering, de snelheid en richting van informatie (karakteristieke snelheid,
anisotropie) en intuitieve verbanden tussen een verandering in het aantal voertuigen
en een verandering in hun snelheid. We laten zien dat Fastlane en slechts één an-
der model, de enige modellen zijn die aan alle vereisten voldoen. Bovendien wordt
een stappenplan geintroduceerd dat toegepast kan worden om ieder ander (nieuw te
ontwikkelen) kinematische golf-model met meerdere klassen te analyseren met be-
trekking tot de vereisten. Voor de modelanalyse die wordt gepresenteerd in Hoofdstuk
7 hebben we echter een nieuwe formulering van het generieke model nodig, die wordt
geintroduceerd in Hoofdstuk 6.

Lagrangiaans coordinatenssyteem

Hoofdstuk 6 vormt de kern van dit proefschrift. Het gegeneraliseerde model wordt
geherformuleerd in het Lagrangiaanse codrdinatensysteem. Lagrangiaanse codrdina-
ten bewegen mee met de voertuigen van de snelste klasse. Deze nieuwe formulering
maakt het eenvoudiger om te analyseren of informatie sneller gaat dan de voertui-
gen zelf (anisotropie). Dat is omdat informatie reist met de karakteristieke snelheden,
die op hun beurt weer gelijk zijn aan de eigenwaarden van een bepaald systeem van
vergelijkingen. De eigenwaarden van dat systeem in de traditionele formulering zijn
echter moeilijk analytische te bepalen, en in gevallen met veel klassen kan dat zelfs
onmogelijk zijn. De formulering in de Lagrangiaanse coordinaten biedt het voordeel
dat het alleen nodig is om te bepalen wat het teken is van de eigenwaarden. In tegen-
stelling tot het bepalen van de waarde zelf, is het wel mogelijk om het teken van de
eigenwaarde te bepalen. Tenslotte, worden Lagrangiaanse coordinaten toegepast om
efficiénte numerieke methoden te ontwikkelen.
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Numerieke methoden en netwerken van wegen

Om een verkeersstroommodel zoals Fastlane toe te passen in een simulatie, moeten
de continue vergelijkingen gediscrediteerd en opgelost worden. In Hoofdstuk 8 ont-
wikkelen we de bijbehorende numerieke methoden voor kinematische golf-modellen
met één klasse. In Hoofdstuk 9 worden de methoden uitgebreid naar modellen met
meerdere klassen. Bovendien ontwikkelen we in Hoofdstuk 8 meetmethoden om de
nauwkeurigheid van verkeerstroommodellen te kwantificeren, volgens grootheden die
speciaal relevant zijn binnen verkeersstromingen.

Het Lagrangiaanse codrdinatensysteem biedt voordelen voor de nauwkeurigheid en
snelheid van de simulatie. In traditionele numerieke methoden voor verkeerstroom-
modellen worden tijd en ruimte in discrete eenheden (tijdstappen en roostercellen)
verdeeld. De oplossing van de vergelijkingen kan dan iedere tijdstap en voor iedere
roostercel benaderd worden. Het nadeel van deze methode is dat informatie zowel
van een roostercel naar de stroomafwaartse roostercel kan gaan (in vrije afwikkeling),
als van een roostercel naar de stroomopwaartse roostercel (in congestie). Dit levert
relatief trage berekeningen en onnauwkeurige oplossingen op. Echter, zodra van een
bepaald model bekend is dat informatie niet sneller reist dan de voertuigen, kan het
Lagrangiaanse coordinatensysteem gebruikt worden om efficiénte numerieke metho-
den te ontwikkelen. In plaats van het verdelen van de ruimte in roostercellen, worden
de voertuigen nu in groepen verdeeld. In iedere tijdstap wordt vervolgens de positie en
de snelheid van iedere voertuiggroep benaderd. Omdat informatie niet sneller reist dan
de voertuig(groep)en, reist informatie altijd van de ene groep naar de volgende groep,
en nooit naar de vorige. Dit levert snelle en nauwkeurige rekenmethoden op.

In Hoofdstuk 10 presenteren we een uitbeiding van de numerieke methoden uit Hoofd-
stuk 8 en 9 naar netwerken, om simulaties uit te kunnen voeren op netwerken van
wegen. Daarvoor voegen we discretisaties toe van knoopmodellen die instroom- en
uitstroomranden, toe- en afritten en andere inhomogeniteiten beschrijven. Deze an-
dere inhomogeniteiten zoals vermindering of vermeerdering van het aantal rijstroken
of een verandering in de snelheidslimiet komen tot uiting in tijdelijke of plaatselijke
veranderingen in de fundamentele relatie. De traditionele numerieke methoden zijn in
het algemeen eenvoudiger uit te breiden met deze knoopmodellen, maar ook knoop-
modellen gebaseerd op het Lagrangiaanse codrdinatensysteem zijn mogelijk en leveren
goede resultaten op.

Aanbevelingen

We sluiten deze samenvatting af met twee soorten aanbevelingen: aanbevelingen voor
toepassingen van de resultaten, waaronder het Fastlane model, en aanbevelingen voor
toekomstig onderzoek.
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Toepassingen

Fastlane is in het bijzonder geschikt voor toepassing op netwerken van hoofdwegen
met veel verschillende soorten voertuigen. Het kan bijvoorbeeld gebruikt worden voor
toestandschatting, -voorspelling en -regeling voor wegennetwerken in havens. Twee
collega’s bespreken deze toepassingen in hun proefschriften: Yuan (2013) introduceert
methoden voor toestandschatting met Fastlane in Lagrangiaanse coordinaten, Schreiter
(2013) introduceert regelmethoden die gebruik maken van Fastlane voor het wegen-
netwerk in de Rotterdamse haven. Het is aangetoond dat Fastlane snelle en nauw-
keurige resultaten oplevert die superieur zijn aan de resultaten die worden bereikt met
simulatiegereedschappen die momenteel in de praktijk worden toegepast.

Indien Fastlane niet voldoet aan de eisen voor een bepaalde toepassing, kan de stam-
boom (Hoofdstuk 2, Appendix A) of het stappenplan voor de beoordeling van kine-
matische golf-modellen met meerdere klassen (Hoofdstuk 7) gebruikt worden om een
ander geschikt model te vinden. Vooral het stappenplan levert een efficiénte methode
om kwalitatief geschikte modellen te onderscheiden van ongeschikte modellen. Het
voordeel van het stappenplan is dat de (meestal kostbare) kalibratie niet uitgevoerd
hoeft te worden voor alle modellen. De kalibratie van de kwalitatief geschikte model-
len kan vervolgens uitgevoerd worden door toepassing van de nauwkeurigheidsmaten
die zijn voorgesteld in Hoofdstuk 8.

Als laatste kunnen de numerieke methoden voor homogene wegen en voor netwerken
van inhomogene wegen (Hoofdstuk 8—10) ook toegepast worden op andere verkeers-
stroommodellen dan Fastlane.

Toekomstig onderzoek

We onderscheiden drie voorname gebieden voor verder onderzoek: de stamboom, het
Fastlane model en de nauwkeurigheid van numerieke methoden.

De stamboom (Hoofdstuk 2, Appendix A) geeft een aantal aanknopingspunten voor
de verdere ontwikkeling van verkeerstroommodellen. Ten eerste, kunnen er generieke
modellen ontwikkeld worden die nog meer modellen omvatten dan de huidige gene-
rieke modellen. De generieke modellen kunnen vervolgens toegepast worden voor het
kwalitatief beoordelen van de modellen die binnen het generieke model vallen. Ten
tweede, blijken hybride modellen geschikt om de voordelen van verschillende typen
modellen te combineren. Deze ontwikkeling kan voortgezet worden bijvoorbeeld door
toepassing van de Lagrangiaanse formulering (Hoofdstuk 6) en door het combineren
van modellen met slechts én klasse met modellen met meerdere klassen.

Het Fastlane model (Hoofdstuk 4) kan verder ontwikkeld worden. De huidige manier
waarop pce-waarden momenteel in vrije afwikkeling worden bepaald is bijvoorbeeld
niet erg realistisch. Dat kan verbeterd worden. Bovendien kunnen de numerieke me-
thoden verder verbeterd worden, met name de knoopmodellen in Lagrangiaanse co-
ordinaten verdienen aandacht (Hoofdstuk 10).
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De meetmethoden voor de nauwkeurigheid van numerieke methoden kunnen verder
uitgebreid worden (Hoofdstuk 8). Na kleine aanpassingen, zijn ze bijvoorbeeld ook
geschikt om simulatieresultaten te vergelijken met de gemeten verkeerstoestand. Deze
innovatie levert nieuwe en betere methoden voor het kalibreren van verkeerstroom-

modellen.



Chapter 1

Introduction

Traffic flow models are used to describe and predict traffic on roads. For example,
they model the number of vehicles, their velocity, their acceleration and the distance
and time between vehicles. By doing simulations based on these models, the perform-
ance of roads or traffic networks can be assessed. This includes answering questions
about the presence and duration of congestion, travel times and travel time delays. This
information can be used in many applications including providing information on con-
gestion to road users, and in traffic control. In this dissertation we develop and analyze
a traffic flow model and numerical methods that can be applied in a simulation tool.

The outline of this introductory chapter is as follows. We elaborate further on the con-
text of this research in Section 1.1. In Section 1.2 we introduce our research objective
and approach. In Section 1.3 we outline our main scientific contributions, whereas the
main applications and practical contributions are discussed in Section 1.4. We con-
clude this chapter with an outline of the rest of this dissertation (Section 1.5).

1.1 Background and motivation

Figure 1.1 shows the traffic flow modelling cycle. It consist of five main items: obser-
vation, theory and model development, discretization and simulation. In this section
we discuss the modelling cycle and position our research within this cycle.

The development of traffic flow models leans heavily on observations: the first step
in Figure 1.1. Data is collected using, for example, loop detectors, cameras or GPS
devices that many vehicles have on-board, such as the mobile phone of the driver.
Alternatively, data is collected using lab experiments for example with a driving sim-
ulator. These observations are analyzed and phenomena that characterize traffic flow
are recognized.

In the second step, observations are used to build a theoretical framework. The theoret-
ical framework consists of (mainly qualitative) statements and (behavioural) assump-
tions. For example, it is assumed that drivers perceive short space headways as more



32 Multi-class continuum traffic flow models: Analysis and simulation methods

[ Observation

[ Theory ]
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Numerical methods <1 ,> Accuracy measures

[ Discretized model j

[ Simulation

Figure 1.1 Traffic flow modelling cycle. In this dissertation we focus on the center part
(in the grey rectangle).

dangerous at high velocities than at low velocities. This is assumed to be the reason
why at low velocities shorter headways are maintained. Another assumption is that
drivers only react to their leaders and not to their followers.

In the third step, the theoretical framework is used to build a traffic flow model. The
model consists of a set of (usually continuous) equations. For example, the theory
about short headways at low velocities and long headways at high velocities is quanti-
fied in a fundamental relation. The fundamental relation expresses the average vehicle
velocity as a function of the average headway. Alternatively, a car-following model is
developed that describes how a following vehicle reacts to its leader. In such models,
the assumption that drivers only react to their leaders is applied.

The continuous models can not be used directly in a computer simulation and discret-
ization is applied in the fourth step. In most simulation tools, time is divided into
discrete time steps. Furthermore, depending on the model, also space or other continu-
ous variables are discretized. Numerical methods are applied to approximate the new
traffic state each time step. This results in a discrete traffic flow model.

Finally, the discrete traffic flow model is implemented in a computer program. Using
the simulation tool, traffic state estimation and predictions can be made. Simulation
results are compared to observations to calibrate the parameters and to validate the
simulation tool.

Our work contributes to the entire traffic flow modelling cycle, while focussing on the
central part in Figure 1.1: theory and model development and discretization.
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1.2 Research objective and approach

In this section we discuss in more detail some of the elements in the traffic flow mo-
delling cycle and identify the key areas to which this research contributes. We discuss
which elements we have improved (i.e., our research objectives) and we describe how
we improve those elements (i.e., our research approach).

1.2.1 Research objective

As mentioned before, we focus on the central part of the modelling cycle in Figure 1.1,
including theory, modelling and discretization. The choice of phenomena that we want
to model is mainly determined by our foreseen applications (traffic state estimation
and prediction, traffic management, dynamic traffic assignment, see Section 1.4). The
applications call for a deterministic traffic flow model that allows for efficient simu-
lations (i.e., fast and accurate) but which also takes into account heterogeneity among
vehicles and drivers. From here onward we build a framework and within the frame-
work we develop a model and discretize it. Our main research objectives are related to
these three steps in the modelling cycle:

1. Development of a theoretical framework for multi-class kinematic wave traffic
flow modelling.

2. Development and analysis of a multi-class kinematic wave traffic flow model
within the framework.

3. Development of numerical methods to solve the model equations efficiently (i.e.,
both fast and accurate).

The approach for each of the objectives is detailed below.

1.2.2 Research approach

In order to define the research needs more clearly, we start with a literature study on
existing traffic flow models. We identify trends in the traffic flow modelling literature
and determine which type of model is suitable for our purpose.

Based on the findings from the literature study and anticipated foreseen applications,
we define a theoretical framework. The theoretical framework consists of a set of
modelling principles and requirements. Most of the principles are common for all
kinematic wave models or even for all macroscopic traffic flow models. However, we
add a principle about the heterogeneity of vehicles and drivers. The principles are
used as a foundation for the model. After the model has been formulated, we will
test whether it satisfies the requirements. The requirements are related to the model
formulation itself, the fundamental relation and the model dynamics.



34 Multi-class continuum traffic flow models: Analysis and simulation methods

Secondly, we develop a multi-class kinematic wave traffic flow model, that we call
Fastlane. 1t is based on the above principles and we analyze it with respect to the
requirements. Furthermore, we compare it to other, similar, models with respect to the
requirements. The comparison is largely based on a thorough mathematical analysis
of a novel generalized model. The analysis includes a reformulation of the model in
the Lagrangian coordinate system. This system moves with the vehicles, as opposed
to the traditional Eulerian coordinate system which is fixed in space. The reformulated
model has the same mathematical properties as the original model, but it is easier to
analyze.

Thirdly, we develop numerical methods to solve the model equations. The numeri-
cal methods are also based on the reformulated model in Lagrangian coordinates. We
extend the methods for long homogeneous roads and mixed-class models to include
road networks and multiple vehicle classes. The numerical methods based on the La-
grangian coordinate system are compared with more traditional numerical methods.
Therefore we compare simulation results with the analytical solution of the model.
For the comparison we develop two novel accuracy measures to measure the type of
errors that are most important in the traffic flow context.

1.3 Scientific contribution

This dissertation includes the following main scientific contributions:

e A model tree showing the historical development of traffic flow models (see
Section 1.3.1).
A multi-class kinematic wave model (see Section 1.3.2) including:
— A theoretical framework for multi-class kinematic wave modelling
— A model based on sound principles and satisfying important requirements
(Fastlane)
— A generalized single-pipe multi-class kinematic wave model

— A framework for the assessment of the generalized model and special cases
thereof

Application of the Lagrangian coordinate system to (multi-class) kinematic wave
models (see Section 1.3.3)

Efficient numerical methods for traffic flow models (see Section 1.3.4).

Measures of accuracy both for numerical methods and traffic flow models (see
Section 1.3.5).

‘We discuss the contributions in more detail below.

1.3.1 Model tree

We introduce a model tree showing the genealogy of traffic flow models. It provides
an overview of the main traffic flow models and their relations since the first study on
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the relation between traffic density and flow (Greenshields, 1934). It does not only
give a description of the state-of-the-art, as most literature reviews do. But rather, by
visualizing the information in the form of a genealogy it presents in a clear way:

e An historical overview of traffic flow models.

e The main families of traffic flow models.

e How certain models are derived from or inspired by other models.

e The convergence of certain branches of models to a generalized model.

Using the model tree we are able to identify research needs.

1.3.2 Multi-class kinematic wave modelling

We develop the Fastlane model. It is a novel type of multi-class kinematic wave model
and is well suited for the anticipated applications. Just like many other multi-class mo-
dels, it includes a passenger car equivalent (pce) value, expressing that certain types
of vehicles (e.g., trucks) have a higher impact on traffic than others (e.g., passenger
cars). Fastlane is distinguished from other models by the fact that it incorporates space
occupancy in the pce-value, or in the pce function. It is the first multi-class model that
bases its pce function (via the space occupancy function) on a set of behavioural as-
sumptions. The behavioural assumptions are in line with assumptions in safe-distance
car-following models. Moreover, the Fastlane model has a firm basis in a theoretical
framework for multi-class kinematic wave traffic flow modelling, including a consist-
ent set of principles. The framework furthermore includes a set of qualitative require-
ments, which are all satisfied by Fastlane.

We present a step-by-step plan for the qualitative assessment of multi-class kinematic
wave models. Over the last decade, many multi-class kinematic wave models have
been developed. We propose a generalized multi-class kinematic wave model, based
on the Fastlane model that includes all these models as special cases. As far as we
know, this is the only generalized model that includes all those models. Furthermore,
we apply the generalized model to assess each model with respect to a consistent set
of qualitative requirements. We develop a step-by-step plan to perform such an as-
sessment. With the results of the assessment, it can be decided more easily which
models need or deserve further development and which do not because they have qual-
itatively undesirable properties. We do not know of any previous rigorous effort to
qualitatively assess such models. Individual models have been assessed before. This
includes ‘basic’ models (Benzoni-Gavage & Colombo, 2003; Zhang et al., 2006) and
more ‘advanced’ models (Ngoduy & Liu, 2007). In their assessments an eigenvalue
analysis is performed. However, they apply the traditional Eulerian coordinate system.
Therefore, the eigenvalue analysis is difficult, if possible at all, if there are many (more
than 3 or 4) vehicle classes. We apply an alternative coordinate system which allows
for an eigenvalue analysis even if there are arbitrary many vehicle classes.
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1.3.3 Lagrangian coordinate system

The rigorous model assessment is possible due to the reformulation of the generalized
model in Lagrangian coordinates. Multi-class kinematic wave models are traditionally
formulated in the Eulerian coordinate system, which is fixed in space. We reformulate
those models in the Lagrangian coordinate system, which moves with the vehicles.
The new formulation has multiple advantages. Using this coordinate system, the as-
sessment of the models with respect to certain criteria becomes easier. Furthermore,
more efficient numerical methods can be based on this coordinate system.

1.3.4 Numerical methods

We model traffic flow using a nonlinear hyperbolic partial differential equation of the
following form:

du N af(u)

ot ox

—0 (1.1)

with u a variable, f(u) a convex function and ¢ the time coordinate and x the space
coordinate. We extend the model to include multiple classes, which implies that u
becomes a vector of variables, and to include a source term on the right-hand side.
The equation (1.1) is also know as the conservation equation (or conservation of mass,
conservation of vehicles). In our application, the function f is a highly nonlinear
function. One important difficulty is that its derivative changes sign. The Godunov
method (Godunov, 1959) is often used to solve this type of equations. In traffic flow
it is often referred to as the minimum supply demand method or the cell transmission
model. However, this solution method is inaccurate because of the nonlinearity of f.
We solve this problem by first reformulating the model in the Lagrangian coordinate
system, which leads to a ‘less nonlinear’ function f*: it is now nondecreasing and thus
its derivative does not change sign. Secondly, we apply the Godunov method. We show
that this numerical method, the upwind method, is more accurate than the traditional
minimum supply demand method. Furthermore, we study alternative upwind methods
which are expected to be even faster.

1.3.5 Accuracy measures

We develop two novel accuracy measures that are especially well suited to assess the
accuracy of traffic flow models and simulations. They quantify phase and diffusion er-
rors which are important in traffic flow context, unlike more commonly used measures
of accuracy such as the root mean square error (RMSE). The phase error measures
whether congestion in the simulation occurs at the same moment and at the same place
as in the exact solution of the model equations or in real traffic. This is important in ap-
plications where one wants to know whether congestion will spill back to, for example,
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an off ramp. Another important property of traffic flow (and traffic flow models) is that
there are sharp discontinuities which do not smooth out over time. The diffusion error
measures whether the discontinuities are preserved in the simulation. We only apply
the measures to compare simulation results obtained using numerical methods with the
analytical solution of the problem. That is, we quantify errors that are made in the step
from model to discretization in the traffic flow modeling cycle (Figure 1.1). However,
we foresee that these measures can be applied in other steps in the traffic flow model-
ling cycle as well. They can be applied to quantitatively compare traffic flow models
and simulations or traffic state estimations with observations.

1.4 Application and practical contributions

The applications and practical contributions of this dissertation are partly related to the
application of the Fastlane model. In this section we also discuss other applications
and practical contributions.

1.4.1 Applications of Fastlane

Our traffic flow model is a deterministic model that includes multiple user classes.
When compared to other multi-class models it is a relatively simple model, especially
when formulated in the Lagrangian coordinate system. Because of its simplicity we are
able to develop numerical methods which allow for efficient simulations. Because of
these properties, the model is well suited for applications in which it is important that
the model is deterministic and gives quick and accurate simulation results. Examples
of such applications are:

e On-line traffic state estimation
Real time traffic state prediction
Traffic management

Dynamic traffic assignment
Training of traffic controllers

Planning of evacuation strategies

All these applications serve the goal of improving transportation systems and espe-
cially motorway networks. However, vehicles and drivers on motorway networks can
be highly heterogeneous. For example, passenger cars are usually shorter than trucks,
have higher maximum velocities and acceleration. Furthermore, trucks have a large
impact on traffic flow: only a small percentage of trucks can reduce the capacity of
a road substantially (Elefteriadou et al., 1997; Kockelman, 1998). Therefore, in re-
gions with many trucks, such as around logistics hubs, it is important to include the
heterogeneity of vehicles and drivers in the traffic flow model.
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Figure 1.2 Control loop for multi-class model predictive control using Fastlane.

An example of the application of our Fastlane model is shown in Figure 1.2. It shows
how sensors measure traffic characteristics such as class-specific flows and velocities.
The data is then used to estimate the current traffic state. Based on this estimation
a prediction of one hour ahead is made. This is done within an optimization loop:
different traffic management scenarios are tested and their performance is assessed.
The scenarios include different measures for different classes. For example, trucks
may be instructed to use one route, while passenger cars are directed to another route.
The optimal control scenario is then implemented in reality. The traffic system reacts
to this and the loop starts again. Fastlane is especially well suited for this application
because:

e Fastlane includes multiple vehicle/driver classes.

e Fastlane allows for efficient state estimation using Kalman filtering and the La-
grangian coordinate system (Yuan, 2013).

e Fastlane allows for quick and accurate predictions that can be used within an
optimization loop (Schreiter, 2013).

1.4.2 Other applications and practical contributions

Other applications and practical contributions of this dissertation include:

e A step-by-step plan for the qualitative assessment of traffic flow models.
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e Efficient numerical methods for traffic flow models.
e Accuracy measures for traffic flow models and simulation tools.

They are discussed in more detail below.

Our method for the qualitative assessment of traffic flow models helps in selecting an
appropriate model. By first assessing a (new) model this way, it can be shown whether
the model has qualitatively desirable properties. If it has, the model may be worth the
effort of calibrating it to the problem at hand. If not, there is no need to try to calibrate
and apply the model because it will not be able to reproduce observations accurately
enough.

Once a traffic flow model has been evaluated as a qualitatively good model, the accu-
racy measures are useful in calibrating and validating the model. They can be applied
to evaluate errors that are especially important in traffic flow, unlike most commonly
used accuracy measures such as the RMSE.

Finally, we develop efficient numerical methods to be applied to Fastlane. However,
they can also be applied to other multi-class or mixed-class macroscopic traffic flow
models. They include methods to simulate traffic flow over nodes, which are essential
elements if one wants to simulate traffic on a network.

1.5 Dissertation outline

The content of the main part of this dissertation is schematically outlined in Figure
1.3. The figure shows that the research focusses on two issues: multi-class traffic flow
modelling and efficient simulation methods for networks with this type of models. In
both parts we apply the Lagrangian formulation of a generic multi-class traffic flow
model, which is introduced in the central chapter (Chapter 6).

In the first part of this dissertation we develop a macroscopic traffic flow model:
Fastlane. The outline of this part is as follows. In Chapter 2 we review the existing
literature on traffic flow models. The historical development of traffic flow models is
condensed in a model tree, showing the genealogy of traffic flow models. We identify
gaps and argue why we continue with the development of a multi-class kinematic wave
model. In Chapter 3 we propose a theoretical framework for the development and
analysis of multi-class kinematic wave models. The framework consists of a set of
principles and a set of requirements. The principles are later used in the development
of Fastlane. The requirements are later used to assess whether Fastlane and similar
models have some important qualitative properties. The actual model development of
Fastlane is described in Chapter 4. This chapter focusses on the model equations and
their derivation and interpretation. In Chapter 5 we generalize the Fastlane model.
This results in a generic single-pipe multi-class kinematic wave model in which all
such models known from literature (Chapter 2) are contained. Finally, some results
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from Chapter 6 (outlined below) are used in Chapter 7 to assess the generalized ki-
nematic wave model and all specific models known from theliterature. It is assessed
whether the models satisfy the requirements proposed in Chapter 3.

In Chapter 6 we reformulate the generalized multi-class kinematic wave model in the
Lagrangian coordinate system. The Lagrangian coordinate system moves with the
vehicles. The reformulated model allows for an easier assessment of the requirements
(Chapter 7). Furthermore, the Lagrangian formulation is used in the second part of this
dissertation to develop more efficient simulation methods.

In Chapter 8 we develop numerical methods for mixed-class kinematic wave models.
Furthermore, we develop accuracy measures and apply them in the assessment of the
accuracy of numerical methods. In Chapter 9 we develop the numerical methods fur-
ther for multi-class kinematic wave models. All numerical methods in Chapter 8 and
9 are developed for homogeneous roads without considering inflows or outflows. In
Chapter 10 the numerical methods are developed further to include inflow and out-
flow boundaries and inhomogeneities including ramps. Finally, Chapter 11 concludes
this dissertation by summarizing the main findings and applications and by suggesting
future research directions.






Chapter 2

State-of-the-art traffic flow modelling

Traffic flow models have been developed and used since the beginning of the twentieth
century. Traffic flow models are part of a long history of mathematical modelling of
physical and other systems. Scientists and engineers use these models as simplified
representations of real-world systems. They are applied to explain and predict weather
or chemical reactions, behaviour of materials or humans, fluid or traffic flow, etc. In
this chapter we present a review of traffic flow models. The discussion of the relations
between traffic flow models and other models is postponed until the end of this chapter.

The review follows the historical lines of the development of traffic flow models since
they were first studied in the 1930’s. Previous reviews focus on the current state-of-the-
art and review the models on their current value (Papageorgiou, 1998; Brackstone &
McDonald, 1999; Zhang, 2001; Hoogendoorn & Bovy, 2001b; Helbing, 2001; Kerner,
2009; Treiber & Kesting, 2010; Treiber et al., 2010; Orosz et al., 2010; Wilson &
Ward, 2011; Bellomo & Dogbe, 2011). We aim to take one step further back and give
an historical overview of the highlights in traffic flow modelling. This approach shows
better how traffic flow models have developed and how different types of models are
related to each other. Furthermore, it forms the basis of our next step in traffic flow
modelling, using a multi-class approach. To show the historical development of traffic
flow models we introduce a model tree, see Figure 2.1. A more detailed version of the
model tree is included as Appendix A. The rest of this chapter is devoted to discussing
the model tree, the models in it and the relations between them.

All models in the tree have one common ancestor: the fundamental relation (or fun-
damental diagram). The other three families consist of micro-, meso- and macrosopic
models. After the introduction of the fundamental relation in the 1930’s, microscopic
and macroscopic models were introduced simultaneously in the 1950’s. Mesoscopic
models are about a decade younger. The model tree shows that particularly over the
last two decades, the fundamental relation and all three types of models have been
developed further and many offshoots can be recognized. The fundamental diagram
relates the headways (front-to-front following distance) to vehicle velocity. How head-
ways and velocities change can be described by micro-, meso- or macroscopic models.
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On the one hand, microscopic models distinguish and trace the behaviour of each indi-
vidual vehicle. On the other hand, macroscopic models aggregate vehicles and traffic
is described as a continuum. Mesoscopic models are categorized in between micro-
and macroscopic models as their aggregation level is between those of micro- and
macroscopic models. Categorizing traffic flow models can be done according to other
criteria such as whether the variables are continuous or discrete, the level of detail, sto-
chastic or deterministic process representation and the scale of the application (large
networks vs. links and intersections), type of model equations ((partial) differential
equations, discrete model equations, static models) or the number of phases described
by the model (Hoogendoorn & Bovy, 2001b; Treiber & Kesting, 2010; Treiber et al.,
2010). Since the development of traffic flow models has followed largely the family
lines of micro-, meso- and macrosopic models, we use this traditional categorization
throughout the rest of this chapter.

In the model tree we omit models related to lateral behaviour such as lane changing
and gap acceptance models. This would make the model tree, and especially the mic-
roscopic family much more extended without adding much to our aim of setting up a
basis for the development of a novel multi-class kinematic wave model. For the same
reasons, we only include models for homogeneous roads. The discussion on node
models describing the behaviour at inhomogeneities such as on- and off ramps is post-
poned until Chapter 10. Moreover, we do extensively discuss the branch of multi-class
kinematic wave models. By doing so, we can later (in Chapter 5) relate and compare
our newly introduced model to other similar models. However, we do not include
multi-class extensions of microscopic models. Again, this would have made the model
tree much more extended without adding much insight since almost any microscopic
model can be, and has been, formulated with multiple classes.

In this chapter we first discuss the fundamental relation in more detail, see Section
2.1. We then discuss models in each of the other three families: Section 2.2 presents
microscopic models, Section 2.3 presents mesoscopic models and Section 2.4 presents
macroscopic models. Section 2.5 discusses some relations between traffic flow models
and other similar models, it reviews critical remarks on traffic flow models. Section
2.6 concludes this chapter with arguments as to why we have chosen to further develop
the branch of multi-class kinematic wave traffic flow models.

2.1 Fundamental diagram

Most traffic flow models are based on the assumption that there is some relation be-
tween the distance between vehicles (headway or spacing) and their velocity, e.g., as
in Figure 2.2(d). The relation between spacing and velocity was first studied by Green-
shields (1934) and called the fundamental relation (or fundamental diagram) later. Tak-
ing one step further back in time, Knight (1924) was the first to discuss traffic equilib-
rium, in an example that has later become famous as Wardrop’s principle. However,
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Figure 2.2 Fundamental relations in different planes.

Greenshields is often regarded as the founder of traffic flow theory as he was the first
to observe and describe the movement of vehicles (Kiihne, 2011). In fact, the article
(Kiihne, 2011) was presented on a conference devoted to the 75th anniversary of the
introduction of the fundamental diagram by Greenshields (Kiihne & Gartner, 2011).

In this section we consider the fundamental relation as (part of) a traffic flow mo-
del. Alternatively, the fundamental relation (or fundamental diagram) is often used to
present observed traffic states. In Section 2.1.4 we discuss how these observations are
used to adapt the fundamental relation which is applied in a model.

2.1.1 Definition of variables

Originally Greenshields studied the relation between the variables spacing and velo-
city. However, the fundamental relation can also be expressed in other variables such as
density (average number of vehicles per unit length of road) and flow (average number
of vehicles per time unit), see Figure 2.2. These variables were first defined rigorously
by Edie (1965). Figure 2.3 illustrates the definitions. Edie defines flow as the flow in
an area A with length dx and duration d¢ which is determined by the number of vehicles
N(A) that travel through the area and the distance y, they travel through the area:

N
Garea — —Zgé;n (2.1)

Similarly, Edie defines density as the density in an area using the time r, vehicle n is
present in the area:

(2.2)
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Figure 2.3 Time-space region with some vehicle trajectories to illustrate Edie’s defini-
tions of flow and density. N(A) is the number of vehicles that travel through the area A.

Edie concludes with the intuitive definition of velocity in an area by dividing the total
distance traveled by the total time spent:

N
Varea = Tarea = anl)’n (2.3)

Parea Zilvzl I'n

These are workable definitions to extract flow, density and velocity from observations
of a large area A with many vehicles N. Edie shows that they can even be applied
to long road sections observed over a short period of time or, vice versa, short road
sections observed over a long period of time. However, for other applications such as
macroscopic traffic flow models, flows, densities and velocities at points in (x,) are
considered. Therefore, we have to assume that traffic is a continuum flow. In Section
2.5.1 we argue why this is a reasonable assumption. The assumption implies that N be-
comes continuous (instead of discrete). Furthermore, N is assumed to be continuously
differentiable in x and ¢. Edie’s definitions are then not applicable directly. However,
by decreasing the area A such that it becomes a point, they reduce to definitions of
flow, density and velocity at points.

The local and instantaneous flow, density and velocity are found using the procedure
described by Leutzbach (1988). To find the local and instantaneous flow (the flow at a
point in (x,7)) we decrease the length of the road section: dx — 0. This yields the local
flow through a cross section x. Afterwards, we decrease the time d — 0 and find:

Definition 2.1 ((local and instantaneous) flow).

N
=1Yn . N(x,[t,t +dt

2.4
dr—0dx—0 dxdt dr—0 dr 24

={local (x)
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To find the local and instantaneous density we decrease the time: dt — 0. This yields
the instantaneous density through a cross section . Afterwards, we decrease the length
dx — 0 and find:

Definition 2.2 ((local and instantaneous) density).

. YN . N([x,x+dx],t)
px1) diinomlino dxdrt dglo dx 25

=Pinstantaneous (x )

Finally, similar to Edie’s definition of velocity (2.3), we define the local and instanta-
neous velocity:

Definition 2.3 ((local and instantaneous) vehicle velocity).

q(x,1)
v(x,t) = (2.6)
p(x.1)
In addition, we define local and instantaneous spacing:
Definition 2.4 ((local and instantaneous) vehicle spacing).
(x,1) 1 2.7)
s(x,t) = .
p(x;1)

2.1.2 Shapes of the fundamental relation

In 1934, Greenshields proposed a fundamental relation that is linear in the spacing-
velocity plane. However, his name has now been linked to the fundamental relation
that he proposed one year later (Greenshields, 1935). This fundamental relation is
linear in the density-velocity plane and thus parabolic in the density-flow plane, see
Figures 2.4(a) and 2.5(a). Since then, many other shapes of fundamental relations
have been proposed. The Daganzo (1994) fundamental relation is probably the most
widespread. It is bi-linear (triangular) in the density-flow plane, see Figures 2.4(b) and
2.5(b). Figures 2.4(c) and 2.5(c) show the Smulders fundamental diagram (Smulders,
1990), which is a combination of the previous two: it is parabolic for low densities and
linear for high densities (parabolic-linear). It satisfies, unlike Greenshields’ fundamen-
tal relation, later findings that the relation between density and flow is (approximately)
linear at large densities (Cassidy & Windover, 1995; Kerner & Rehborn, 1996; Treiber
& Helbing, 2002). However, it does represent that also at low densities vehicles interact
and their velocity decreases with an increase in density (Hoogendoorn, 1999, Chapter
8), unlike in Daganzo’s fundamental relation. Finally, Figures 2.4(d) and 2.5(d) show
the Drake fundamental relation (Drake et al., 1967). For a more detailed overview of
different shapes of fundamental relations we refer to (Li, 2008).
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Figure 2.4 Different shapes of density-flow fundamental relations.

Vmax Vmax

velocity
velocity

0 Pjam 0 Perit Pjam
density density
(a) Greenshields. (b) Daganzo.
Vmax Vmax
oy oy
é) Verit §
) )
> >
0 Perit Pjam 0 Perit
density density
(c) Smulders. (d) Drake.

Figure 2.5 Different shapes of density-velocity fundamental relations.
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Figure 2.6 A sound fundamental relation and its properties, according to Del Castillo
(2012).

2.1.3 Properties and requirements

Figure 2.6 illustrates some properties and requirements of fundamental relations. The
properties of a sound fundamental relation are discussed by Del Castillo (2012):

Velocity ranges from zero to a maximum value vy,x.

Density ranges from zero to a maximum value Pjap.

Velocities at the extreme density values are v(0) = viax and v(Pjam) = 0.

Flows at the extreme density values are ¢(0) = g(Pjam) = 0.

Maximum velocity and congestion wave speed are the slopes of the fundamental
relation at the extreme density values: viax = dg/dp (0) and w = dg/dp (pjam)-
6. The fundamental relation is strictly concave: d°q/dp? < 0,V0 < p < Pjam-

Nk WD =

The first three properties can be regarded as requirements following from traffic flow
fundamentals: they result from easily observable facts. First, velocities are bounded
from above by (legal or technical) maximal vehicle velocity which is reached (in the
limit) if there are no other vehicles. Second, vehicles take up space and there is a max-
imum number of vehicles that can be fitted on a certain road length. At this maximum
density, vehicles can not move. Finally, both velocity and density can not be negative.
The fourth and fifth property follow from the first three requirements combined with
the definition of velocity (Definition 2.3). The fifth property furthermore includes the
definition of congestion wave velocity w. Del Castillo (2012) argues that the sixth
property is necessary to define a traffic flow model with a unique solution. However,
there are no reasons to assume that real traffic can not behave in a way that would be
described by a fundamental relation that is not strictly concave. In fact, Zhang (2001)
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shows that a unique solution can be found even if the fundamental relation is convex
and Herbin & Leclercq (2011) show that it is sufficient if the density-flow fundamental
relation is Lipschitz-continuous. Furthermore, it is reasonable to assume that velocity
does not increase with increasing density (dv/dp < 0). Del Castillo does not require
that directly. However, it is a necessary, but not sufficient condition for his last property
on the strict concavity of the fundamental relation.'

Another important property of fundamental relations is the existence of a maximum
flow, or capacity: gcap = MaxXo<p<p;,, q(p). Assuming the above requirements are
satisfied, the capacity is related to a single density called critical density Pt and a
single velocity called critical velocity verie, With geap = Peritverie- The critical density
separates the fundamental relation into two parts: 1) a free flow branch with densities
below critical, velocities above critical and increasing flow for increasing density and
2) a congestion branch with densities above critical, velocities below critical and a
decreasing flow for increasing density.

The Greenshields fundamental relation is the only one of the fundamental relations in-
troduced in Section 2.1.2 that satisfies all of Del Castillo’s criteria. The other ones (the
Daganzo, Smulders and Drake fundamental relation) are not strictly concave, though
the first two are concave. Furthermore, in the Drake fundamental relation there is no
jam density for which velocity and flow are zero.

2.1.4 Scatter in the fundamental relation

For many decades, it has been recognized that the points in observed density-flow plots
usually are wide scattered, see Figure 2.7. (Zhang, 1999; Laval, 2011) argue that much
of the scatter can be explained by non-equilibrium traffic conditions. Zhang defines
traffic to be in equilibrium if over a sufficiently long time and road length velocity and
density do not change: dv/dt =0, dp/dt =0, dv/dx=0and dp/dx = 0. Only points
in the scatter plot that satisfy these criteria can be used to fit the fundamental relation.
This is then called the equilibrium fundamental relation.

Furthermore, it has been argued that fundamental relations consisting of a continuous
line, such as those discussed in the previous sections are not realistic. Edie (1961);
Cassidy & Bertini (1999) explain part of the scatter with a capacity drop: just before
the onset of congestion the outflow out of a bottleneck is higher than in congestion,
see Figure 2.8(a). This phenomenon is still verified and studied nowadays (Coifman
& Kim, 2011). The capacity drop has been explained by a low acceleration rate of
vehicles leaving congestion (Treiterer & Myers, 1974). Slow acceleration can also be
included in a fundamental diagram with hysteresis (Newell, 1965; Zhang, 1999), see
Figure 2.8(b). From a different perspective, Kerner (2009) argues that observed scatter
plots show too much scatter to derive a unique fundamental relation from, cf. (Kerner

! Application of the chain rule shows that if the g(p) is concave then dv/dp < 0. That is: d>q/dp? =
d?(pv)/dp? = pdv/dp + v is negative only if dv/dp < 0, because p > 0 and v > 0.
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& Rehborn, 1996; Kerner, 2004). He proposes to use a Three-Phase approach char-
acterized by the existence of three phases, one of them featuring wide scatter in the
density-flow plane. In his theory the fundamental relation is replaced by two lines and
a two-dimensional region, see Figure 2.8(c).

Both fundamental relations with capacity drop (Figure 2.8(a)) and with hysteresis (Fig-
ure 2.8(b)) imply a non-unique fundamental relation: at a certain density (usually just
above (outflow) capacity) the flow is not uniquely determined by the density but also
depends on previous traffic states. Therefore, for a unique solution of the model, ad-
ditional assumptions are needed on transitions between the branches of the funda-
mental relation (Zhang, 2001). Furthermore, the concavity requirement (see Section
2.1.3) is usually not satisfied by fundamental relations with capacity drop or hysteresis.
The density-flow plane proposed by Kerner & Rehborn (1997); Kerner (2009) (Figure
2.8(c)) is even ‘less unique’. Treiber et al. (2010) show that simulation results of sim-
pler models with a unique fundamental diagram are similar to those of Three-Phase
models, when parameters are chosen appropriately.

Finally, heterogeneity among vehicles and drivers has been used to explain scatter in
observed density-flow plots. In this approach it is assumed that flow not only depends
on density, but also on the traffic composition: a large fraction of trucks, which usually
drive at low speeds and take much space, will result in a low flow. This leads to three-
dimensional fundamental relations such as in Figure 2.8(d) (Chanut & Buisson, 2003).
Its main advantage is that it is uniquely determined by the current densities and it
does not depend on previous traffic states. Furthermore, the fundamental relation can
satisfy all requirements proposed by Del Castillo (2012). We will come back to the
fundamental relation with heterogeneity in Section 2.4.2.

Fundamental relations, whether equilibrium or non-equilibrium, unique or non-unique,
are crucial in traffic flow models. One of the model assumption is that traffic is in a
state on the fundamental relation, or that it tends towards it. Meso- and macroscopic
models mostly include fundamental relations explicitly. Microscopic models usually
have some underlying assumptions on a fundamental relation which can be revealed
by careful analysis of the model or simulation. The other components of micro- meso-
and macroscopic traffic flow models will be discussed in the next sections.

2.2 Microscopic models

The earliest family in the model tree incorporating dynamics are microscopic models.
They are based on the assumption that drivers follow their leader and adjust their be-
haviour to that of the leading vehicle. Microscopic modelling has shown to be a fruitful
line of thought, which is illustrated by the large part of the model tree taken up by this
family. Microscopic models describe the longitudinal and lateral behaviour of individ-
ual vehicles. Only longitudinal behaviour is discussed here. In microscopic models
vehicles are numbered to indicate their order: n is the vehicle under consideration,
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Figure 2.9 Vehicle numbering in microscopic traffic flow models (and macroscopic
models in Lagrangian formulation).

n— 1 its leader, n + 1 its follower, etc., see Figure 2.9. The behaviour of each individ-
ual vehicle is modeled in terms of the position of the front of the vehicle x,, velocity
v, = dx,, /dt, acceleration a, = dv, /dt = dx2/d¢? or a combination of the three.

Three types of car-following models will be discussed in Sections 2.2.1 (safe-distance
models), 2.2.2 (stimulus-response models) and 2.2.3 (action point models). Section
2.2.4 discusses extensions of car-following models. Section 2.2.5 discusses the most
recent branch of microscopic models, namely cellular-automata.

2.2.1 Safe-distance models

The earliest car-following models include a car-following rule based on safe following
distance. Pipes (1953) proposes to express the position of the leader as a function of
the position of its follower:

Xpo1 = Xp+d+Tvy + 1 (2.8)

with 7' the minimum time headway (excluding vehicle length), d the distance between
two vehicles at standstill and l;‘“;hl length of the leading vehicle, see Figure 2.10. Tv,
is interpreted by Pipes as the “legal distance” between vehicle n — 1 and n. By differ-
entiating with respect to time, this model is reformulated as:
Vin — Vn—1

an = T (2.9)
This formulation shows that a driver accelerates (decelerates) when the front gap be-
comes larger (smaller) and that this effect is stronger if the minimum time headway T
is smaller.

Kometani & Sasaki (1961) derive a car-following model from basic Newtonian equa-
tions of motion. It is assumed that a driver acts such that he can avoid a collision even if
the leader would act ‘unpredictably’. Effectively, they replace the distance at standstill
d in Pipes’ model with a velocity-dependent term. Furthermore, their formulation in-
cludes a time delay 7. A positive T represents that it takes some time between a change
in the behaviour of a vehicle and the actual reaction of its follower to this change.
It includes the reaction time of the driver, but can also depend on his perception and
the time it takes between noticing that action is needed/desired and actual braking or
accelerating.
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Figure 2.10 Parameters of Pipes’ safe-distance model.

Gipps (1981) refines safe-distance car-following models by assuming that ‘the driver
travels as fast as safety and the limitations of the vehicle permit’:

vn(f +7) = min { Va(1) +2.5amax T (1 — v—(t)) 0.25 — V”—m,

Vmax Vmax

2
AminT + \/aﬁqinfz — Amin (2(xn1(t) _xn(t) - Sjam) - Vn(l)r - Vn—lb(t) ) } (2~10)

with amax maximum acceleration, a,;, maximum deceleration (minimum accelera-
tion), vmax the desired (maximum) velocity and sj,,, jam spacing. Jam spacing is the
front-to-front (or equivalently rear-to-rear) distance between two vehicles at standstill.
Therefore, if vehicle length is assumed to be equal for all vehicles (" = [V then
Sjam = d + [veh Effectively, Gipps’ approach introduces two regimes: one in which the
vehicle itself limits its velocity (the top part in equation (2.10)), and one in which the
safe distance to the leader limits the vehicles velocity (the bottom part in the equation).

The model tree shows one more development in safe-distance models. In the early
years of car-following models, Newell (1961) proposed a simple safe-distance model
with delay:

Vi =V (Xn—1(t = T) — X (1 — 7)) (2.11)

with the function v, at the right hand side a fundamental relation and 7 the delay time.
Later, he proposed another simple safe-distance model (Newell, 2002):

Xt + Tp) = Xp—1(t) — Sjamn (2.12)

It 1s assumed that a vehicle follows the trajectory of its leader, translated by 7, and
Sjam,n- We note that both reaction time 7, and jam spacing sjam,, may differ for each
vehicle and driver. Daganzo (2006) shows the equivalence of such a simple car-
following model with certain simple cellular-automata and kinematic wave models.
Moreover, Leclercq et al. (2007) show that the model (2.12) is equivalent to a dis-
cretized macroscopic model if the fundamental relation g(p) is triangular. To show
this relation, the macroscopic LWR model is formulated in the Lagrangian (moving)
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coordinate system. The Lagrangian formulation of macroscopic models will be dis-
cussed more extensively in Chapter 6 and further. The formulation is also applied to
develop a hybrid model that couples the microscopic Newell car-following model with
the macroscopic LWR model (Leclercq, 2007a). However, already in 2003, Bourrel &
Lesort proposed another hybrid model combining Newell’s earlier safe-distance model
(2.11) with the LWR model. Laval & Leclercq (2010) propose a car-following model
similar to that by Newell and extended it to include differences between ‘timid’ and
‘aggressive’ drivers.

2.2.2 Stimulus-response models

The second branch of car-following models consists of stimulus-response models. It
is assumed that drivers accelerate (or decelerate) as a reaction to three stimuli:

. n
1. own current velocity v, = —

2. spacing with respect to leader s, = x,—1 — x,

. . . . ds
3. relative velocity with respect to leader (receding rate) § = d_tn =Vy—1—Vn

It can be seen from the model tree that in the late 1950’s and early 1960’s there was a
rapid development of these models (Chandler et al., 1958; Herman et al., 1959; Helly,
1961). The efforts consolidated in the now famous GHR-model, named after Gazis,
Herman, & Rothery (1961):

(a1 (6)

(Sn(t - T))Cz o

an(t) =7 (t—7) (2.13)

y% is considered as the sensitivity of vehicle/driver n. ¥ is the sensitivity para-

meter and c¢; and ¢, are parameters that are used to fit the model to data. The receding
rate $,( — 7) is considered as the stimulus, the acceleration ay,(¢) as the response, hence
the name ‘stimulus-response’ model.

Since those early developments a lot of work has been done in calibrating and valida-
ting this and other similar models. However, in 1999, Brackstone & McDonald con-
cluded that stimulus-response models are being used less frequently, mainly because
of contradictory findings on parameter values. Nevertheless, the model tree shows that
in the last one or two decades many new models have been developed and it seems that
stimulus-response models have become popular again. Wilson & Ward (2011) even
argue that there are too many microsimulation models and that researchers should try
to focus on a small subset that has good qualitative properties, which will be discussed
at the end of this section. Some of the most popular more recent stimulus-response
models are discussed below.
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Bando et al. (1995) introduced the optimal velocity model (OVM) assuming that drivers
accelerate (or decelerate) to their optimal velocity, which is a function of the headway:

an(t) = y(vV'(sa(2)) —va(2)) (2.14)
V¥(s) = vmax(tanh(s—c1)+c2) (2.15)

with 7 the sensitivity parameter and ¢ and ¢, parameters of the optimal velocity func-
tion v*(s) such that tanh(sj,m — 1) +c2 = 0. In this model, it is very clear how an
equilibrium fundamental relation, in this case the optimal velocity function v*(s), is
incorporated in a microscopic model. Bando et al. (1998) extended their model by
introducing delay 7: in the right-hand side of (2.14) ¢ is replaced by ¢t — 7. The model
now takes into account that drivers do not react immediately to a stimulus, but it takes
some time (delay) before they accelerate or decelerate.

The Intelligent Driver Model (IDM) by Treiber et al. (2000) was developed to better
reproduce many different traffic states. The acceleration is described by:

()5
a4 = ama|1— — (2.16)
Vmax s

with dmax the maximum acceleration, vy, the maximum velocity and & the accelera-
tion exponent. Similar to Gipps’ model, the IDM includes two regimes in the desired

space gap function (Treiber & Kesting, 2010):

s*(v,§) = Sjam + max (O,Tv—f— (2.17)

)
2\/ AmaxAmin >
with @, the maximum deceleration (minimum acceleration), sjum the jam spacing and
T the minimum time headway.

The latest offshoots in the branch of stimulus-response models are based on Three-
Phase-Theory. The acceleration delay model by Kerner & Klenov (2006) and a sto-
chastic car-following model by the same authors (2002) take into account the three
traffic regimes proposed in Three-Phase Traffic Theory (Kerner, 2009).

Already in the earliest days of stimulus-response models Chandler et al. (1958) intro-
duced a general formulation:

a(t) = f(v(t),s(t —7),5(t — 7)) (2.18)

It is interesting to note that, after reformulation, most safe-distance models also fit
in this framework. Therefore, the distinction between safe-distance and stimulus-
response models is not as clear as suggested by e.g., Brackstone & McDonald (1999);
Hoogendoorn & Bovy (2001b). Instead, safe-distance models can be classified as car-
following models in which the assumption that drivers keep a safe distance plays a
large role. Therefore, the distinction rather lies in the assumptions then in the model
equations themselves.
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Currently, Wilson (2008); Wilson & Ward (2011) use the generic formulation (2.18)
to qualitatively asses stimulus-response models. They perform stability analysis and
put forward some constraints on the function f and its parameters. Assuming no time
delay (7 = 0) the requirements are:

e An equilibrium fundamental relation can be derived using the steady-state solu-
tion of f:
Vs >0, 3v=V(s) > 0 such that f(v,s,0) = 0.
e Driving behaviour is ‘rational’, leading to some constraints on the derivatives:
— If velocity increases, the vehicle accelerates less (or decelerates more):
df/dv <O0.
— If headway increases, the vehicle accelerates more (or decelerates less):
df/ds > 0.
— If relative velocity increases (that is: if approach rate decreases or receding
rate increases), the vehicle accelerates more (or decelerates less):
df/ds > 0.

However, Wilson & Ward (2011) do not draw any conclusions on which models are
quantitatively good, and which are not. This is partly because such conclusions do not
only depend on the model formulation but also on its parameters.

2.2.3 Action point models

The third, and last, branch of car-following models consists of action point models,
first introduced by Wiedemann (1974), (Brackstone & McDonald, 1999). However, a
decade earlier, Michaels (1965) discussed the underlying concept that drivers would
only react if they perceive that they approach a vehicle. Therefore, the approach rate
or the headway must reach some perception threshold before a driver reacts. The
main advantage of action point models is that they incorporate, in contrast to other
car-following models, that:

1. at large headways driving behaviour is not influenced by that of other vehicles,
2. at small headways driving behaviour is only influenced by that of other vehicles
if changes in relative velocity and headway are large enough to be perceived.

If driving behaviour is influenced by that of others, any of the previously introduced
safe-distance or stimulus-response models can be used to describe it. Therefore, action
point models can be regarded as a generalization of stimulus-response models.

2.2.4 Multi-class and multi-anticipation car-following models

Most car-following models described and analyzed in literature assume homogeneous
vehicle-driver units, that is: vehicles and drivers all behave identically. However, since
each vehicle is modeled and simulated individually, it is relatively straightforward to
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take into account heterogeneity. In that case model parameters such as desired (max-
imum) velocity, sensitivity and reaction time may vary over vehicles and drivers. In
fact, most simulation tools based on car-following models are multi-class, that is: they
do take into account heterogeneity. For example, originally the Intelligent Driver Mo-
del was formulated as a multi-class model with different parameters amax, @min> Vmax»
Sjam» and T for each vehicle (Treiber et al., 2000).

Multi-anticipation is another way to extend car-following models. In this case more
than one leading vehicle influences the behaviour of a driver. The concept was already
used in the car-following model by Helly (1961) (Brackstone & McDonald, 1999).
However, it has become widespread since Bexelius (1968) developed a multi-anticipa-
tion version of the GHR-model. More recently, multi-anticipation was incorporated in
the optimal velocity model (Lenz et al., 1999) and the Intelligent Driver Model (Treiber
et al., 2006a). Finally, multi-anticipation and multi-class have been combined to take
into account that some drivers look further ahead than others (Ossen & Hoogendoorn,
2006).

2.2.5 Cellular-automata models

Cellular-automata models are usually categorized as microscopic models, even though
they are a different, and much younger, branch in the model tree. This is because the
movement of individual vehicles is modeled. The main difference with car-following
models is that space, and sometimes time, is discretized. Moreover, the velocity is
discretized. Therefore, they are in general computationally more efficient (Knospe
et al., 2004). In cellular-automata models, the road is partitioned into cells of usually
7.5 meters long. In such a cell either a vehicle might be present or not. The model
consists of a set of, either stochastic or deterministic, rules that determine when the
vehicle will move to the next (downstream) cell. The first cellular-automata traffic
flow models was introduced by Cremer & Ludwig (1986). The model by Nagel &
Schreckenberg (1992) is regarded as the prototype cellular-automata model (Knospe
et al., 2004). Each time step each vehicle is advanced a few (or zero) cells according
to the following algorithm:

1. If maximum velocity has not been reached yet then accelerate:
v — min(V+ 1, Vpax ).

2. If headway is too small then decelerate: ¥ — min(7V, jam — 1)

3. Decelerate at random: v — max(v — 1,0) with probability 7.

4. Move: X — X+ 7.

Here ¥ denotes the normalized vehicle velocity in number of cells per time step, Viax
the normalized maximum velocity and §j,y, the normalized jam spacing in number of
cells. x is the cell number and 7 the deceleration probability.

More recent developments combine cellular-automata models with the optimal ve-
locity car-following model Helbing & Schreckenberg (1999) or Three-Phase-Theory
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Kerner et al. (2002). Some of the most popular cellular-automata models have been
compared by Knospe et al. (2004). They conclude that (certain) cellular-automata
models are well able to describe traffic flow on urban roads and sometimes even on
highways.

2.3 Mesoscopic models

Mesoscopic traffic flow models were developed to fill the gap between microscopic
models that describe the behaviour of individual vehicles and macroscopic models that
describe traffic as a continuum flow. Mesoscopic models describe vehicle behaviour
in aggregate terms such as in probability distributions. However, behaviour rules are
defined for individual vehicles. Within this family the branch of gas-kinetic models
appears to be the most popular nowadays. Other branches include headway distribution
models (Buckley, 1968; Branston, 1976) and cluster models (Mahnke & Kiihne, 2007).
In this section we discuss gas-kinetic models (Section 2.3.1) and macroscopic models
derived from them (Section 2.3.2).

2.3.1 Gas-kinetic models

Gas-kinetic traffic flow models were developed in analogy to models describing the
motion of large numbers of small particles (atoms or molecules) in a gas. When applied
to traffic flow, these models describe the dynamics of velocity distribution functions of
vehicles. Prigogine & Andrews (1960); Prigogine (1961) first introduced gas-kinetic
models describing traffic flow by the following partial differential equation:

op  Ip  [(Ip op
at v ax B ( at )acceleration " ( at interaction (219)

with p the reduced phase-space density, which can be interpreted as follows. At time
t, the expected number of vehicles between location x and x + dx that drive with a
velocity between v and v+ dv is the integral of the reduced phase-space density over
this two-dimensional area:

expected # of veh’s in [x,x 4 dx) with velocity in [v,v+dv)

x+dx  pv+dv
= / / p(x,v,t)dxdv = p(x,v,¢)dxdv (2.20)
X v

where the approximation holds in the limit for an infinitesimal area with dx — 0 and
dv — 0. The left-hand side of (2.19) consists of a time derivative and an advection
term describing the propagation of the phase-space density with the vehicle velocity.
At the right-hand side there is an acceleration term describing the acceleration towards
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the equilibrium velocity:

P 3 (o) v
(E) acceleration B _E (pm (2-21)

with Z,cceleration the acceleration time and v is the desired velocity distribution. The
other term at the right-hand side is an interaction term, or collision term, describing
the interaction between nearby vehicles:

(8_p> = (1=m)p(x,n1) /(Vslow — )P (X, Vslow, ) dVsiow (2.22)
ot interaction

with vgow the velocity of a slow vehicle, 7 the probability of immediate overtaking and
hence 1 — 7 the probability of slowing down.

Paveri-Fontana (1975) improved the above gas-kinetic model by relaxing the assump-
tion that the behaviour of nearby vehicles is uncorrelated, which resulted in an adapted
interaction term. Furthermore, the model includes an acceleration term with the desired
velocity distribution v independent of the local number of vehicles. In the mid 1990’s
a revival of gas-kinetic models occurred with the development of a multi-lane version
of Paveri-Fontana’s model, Helbing (1997b).Hoogendoorn & Bovy (2001a) propose
a generic gas-kinetic traffic flow model including the previously mentioned models
(Prigogine & Andrews, 1960; Paveri-Fontana, 1975; Helbing, 1997b) as special cases.

2.3.2 Continuum gas-kinetic models

Gas-kinetic models are usually not applied in simulations as such, but a continuum
traffic flow model is derived and simulations are based on this continuum model. Con-
tinuum gas-kinetic models all include some equation describing the dynamics of the
vehicle velocity and may therefore be categorized as higher-order (macroscopic) mo-
dels, see Section 2.4.3. However, in the model tree we cluster them in the mesoscopic
models family. Phillips (1979) derived a gas-kinetic higher-order model to better rep-
resent traffic flow at high densities. More recently, Treiber et al. (1999) incorporate
a term reflecting the anticipation of drivers. Another example of a higher-order mo-
del derived from a gas-kinetic model is the master model by Helbing et al. (2001).
It adds another partial differential equation to the original Payne model (see Section
2.4.3) describing the dynamics of the velocity variance. Hoogendoorn (1999) derives a
multi-class multi-lane continuum traffic flow model from a gas-kinetic model. Finally,
Tampere et al. (2003) propose a continuum gas-kinetic model that explicitly includes
a simple car-following model with two regimes.
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2.4 Macroscopic models

Macroscopic traffic flow models form the fourth, and last, family in the model tree.
They describe traffic flow as if it were a continuum flow and are often compared to, or
derived in analogy with, continuum models for compressible fluids. Individual vehicles
are not modeled, however aggregated variables such as (average) density and (average)
flow are used. In this section we discuss the two major branches of macroscopic mo-
dels namely kinematic wave models (Section 2.4.1) and higher-order models (Section
2.4.3). Furthermore, in Section 2.4.2 we discuss in more detail multi-class kinematic
wave models.

2.4.1 Kinematic wave models

Macrosopic traffic flow models were first introduced by Lighthill & Whitham (1955b)
and, independently, Richards (1956). In their kinematic wave model the dynamics of
traffic is described by a partial differential equation, which models the conservation of
vehicles:

dp d

L (q(p)) =0 (2.23a)

and a fundamental relation:

q=q(p) (2.23b)

This model, often referred to as the LWR model, does not yield a unique solution.
However, by using the entropy condition, i.e. assuming flow maximization, a unique
solution is found (Ansorge, 1990; Lebacque, 1996). The entropy condition will be
discussed in more detail in Section 3.2.1.

Because of its simplicity the LWR model has received both much attention and critique.
The model tree shows that this resulted in many offshoots. The main drawback of
the LWR model is that vehicles are assumed to attain the new equilibrium velocity
immediately after a change in the traffic state, which implies infinite acceleration. This
problem is addressed by higher-order models (see Section 2.4.3) but also by variants of
the LWR wave model. Lebacque (2002); Leclercq (2007b) address it by introducing
bounded-acceleration. Another drawback of the LWR model is that breakdown (the
transition from the free flow regime to the congestion regime) always occurs at the
same density and without a drop in the capacity. This is addressed by Daganzo et al.
(1997); Laval & Daganzo (2006) by introducing lane changing in a discretized version
of the LWR model (Daganzo, 1994). The stochastic kinematic wave model proposed
by Hoogendoorn et al. (2009) uses breakdown probabilities to reflect that breakdown
might occur at different densities.
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2.4.2 Multi-class kinematic wave models

In the last decade many models that can be categorized in the branch of multi-class
kinematic wave models have been developed. This follows the earlier development of
other types of multi-class models (micro- and mesoscopic, higher-order macroscopic).
Classes are distinguished based on driving behaviour and vehicle properties, such as
(desired) velocity, vehicle length and driving style. Furthermore, classes may be dis-
tinguished based on route or destination. Similar, and usually even simpler, techniques
can be applied in that case.

Daganzo (2002) proposes a multi-class multi-lane model based on the LWR model. It
is assumed that there are two types of drivers: ‘slugs’ who drive slow and have little
incentive to overtake and ‘rabbits’ who attempt to drive fast and overtake more of-
ten. Chanut (2005) extends his earlier single-pipe model (Chanut & Buisson, 2003) to
include moving bottlenecks (e.g., trucks) which drive slowly on only one lane. There-
fore, we also this model as a multi-lane model. Other multi-class kinematic wave
models are single-pipe. This implies that there might be multiple lanes, however they
are not distinguished in the model and overtakings or differences between the lanes are
not taken into account explicitly.

The model tree shows that Wong & Wong (2002) were the first to introduce such a
single-pipe multi-class kinematic wave model. They propose to use a class-specific
version of the conservation equation for each of the U classes (2.24):

apu dqu

o ox

0 (2.24)

with p, the class-specific density of class u, g, = p,v, the class-specific flow and v, the
class-specific velocity. The class-specific velocity depends on the total vehicle density.
Effectively, the vertical axes of the density-flow and density-velocity fundamental rela-
tions are scaled differently for each class, see Figure 2.11(a). Wong & Wong show that
their model is able to reproduce the capacity drop, hysteresis and platoon dispersion.
Other authors have similarly found that multi-class models are able to reproduce phe-
nomena related to scatter in the fundamental diagram better than mixed-class models
(Treiber & Helbing, 1999; Daganzo, 2002; Ngoduy, 2011; Bellomo & Dogbe, 2011)
and references therein. They do this by applying a different fundamental relation for
each class, see Figure 2.11.

Benzoni-Gavage & Colombo (2003); Chanut & Buisson (2003) include the difference
in length between the classes in the fundamental relation. Effectively, they scale both
axes of the fundamental relation differently for each class. Chanut & Buisson show
that this leads to a three-dimensional fundamental relation, see Figure 2.8(d).

A different approach to including heterogeneity in the LWR model is taken by Leclercq
& Laval (2007). They first reformulate the model in the Lagrangian (moving) coordi-
nate system, secondly the reformulated model is discretized. The discretization allows
for a relatively simple introduction of vehicles of different classes. However, for an
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Figure 2.11 Different shapes of two-class fundamental relations. Solid lines indicate
car velocity, broken lines truck velocity.

accurate numerical solution of the model, the parameter choice is restricted severely
(e.g., for each class the average vehicle length L, needs to be an integer times the
average length of a passenger car L).

Ngoduy & Liu (2007) use a similar approach as Benzoni-Gavage & Colombo (2003);
Chanut & Buisson (2003) to the fundamental relation with state-dependent parameters

(07 (07
csfietlled = pcritz n—”) pjsacr?lled = pjamz n_u (2.25)
u u u u

with o, the road share that is assigned to class u:

a, = —P (2.26)

B 23:1 Pu

Ngoduy & Liu refer to the Highway Capacity Manual (Transportation Research Board,
2000) to look up passenger car equivalent values 1m,. The passenger car equivalent

(pce) expresses how much a vehicle adds to the flow relatively to a passenger car.
For example a light truck may count as 1.5 passenger cars, whereas a heavy truck may
count as 3 passenger cars. The Highway Capacity Manual furthermore includes that on
slopes trucks may have even higher pce-values and that the pce may also depend on the
fraction of heavy vehicles. This model was later extended to include a discontinuous
fundamental relation to reproduce the capacity drop (Ngoduy, 2010) and a stochastic
term was included (Ngoduy, 2011) to reproduce hysteresis and scatter in the observed
fundamental diagram.

The two-class model by Logghe & Immers (2008) includes a three-state fundamen-
tal relation, see Figure 2.11(b). It consists of a free flow, a congestion and a semi-
congestion state. In semi-congestion one class (cars) behaves as if it is in a congestion
regime (for increasing density, car flow decreases), while the other class (trucks) be-
haves as if it is in free flow (for increasing density, truck flow increases). The authors
claim that this model correctly represents a user-equilibrium, that is: if one vehicle (or
class) would change its behaviour, it would be off worse.

Fastlane is a recent offshoot in the branch of multi-class kinematic wave models (Van
Lint et al., 2008; Van Wageningen-Kessels et al., under review). It takes a different
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approach without rescaling the fundamental relation. Instead, an effective density is
computed and this is used as a input for the fundamental relation. The fundamental
relation now expresses the class-specific velocity as a function of the effective density,
see Figure 2.11(c). The effective density is a weighted summation of the class-specific
densities:

P =Y Mu(P)pu (2.27)
with 1, the pce-value:
Ly +Tvu(p)
W(p) = — 2087 2.28

with Ly, = Sjamu = 1 / Pjam,. the vehicle spacing at standstill if there would only be
vehicles of class u. L, includes the vehicle length /" and the distance between two
vehicles at standstill d as they were introduced for Pipes’ safe-distance model. 7,
denotes the minimum time headway of class u. The Fastlane model will be derived,
explained, analyzed and discussed in much more detail in the rest of this dissertation.
Furthermore, and in (Van Wageningen-Kessels et al., 2011b) and in Chapter 5 we show
that Fastlane is a generalization of previously introduced multi-class kinematic wave
models.

The most recent multi-class kinematic wave model is the porous flow model by Nair
et al. (2012). It considers heterogeneous traffic on a two-dimensional roadway. Small
vehicles can drive through ‘pores’: openings between other vehicles. It is developed
to model disordered traffic flow with different types of vehicles such as cars, scooters
and bikes and without lanes. In Chapter 5 we show that the model can be reformulated
in a form very similar to the models by Chanut & Buisson (2003); Benzoni-Gavage &
Colombo (2003).

2.4.3 Higher-order models

Higher-order models form the other main branch of macroscopic traffic flow mo-
dels. These models include an equation describing the acceleration (‘velocity dynam-
ics’) towards the equilibrium velocity described by the fundamental relation. In 1971
Payne derived a macroscopic traffic flow model from a simple stimulus-response car-
following model. It yielded a model consisting of the fundamental relation and two
coupled partial differential equations, hence the name higher-order model. The partial
differential equations are the conservation of vehicle equation (2.24) and an equation
describing the velocity dynamics:
* 2
v, _vlp)=v_dp

ot Vo T tum pox 2.29)
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with v*(p) the equilibrium velocity described by the fundamental relation. The para-
meters in the model are interpreted differently by different authors. For example,
Zhang (2001) interprets f.cax as the relaxation time and 2= U /trelax 18 the ‘sound
speed’ with u the anticipation coefficient.

Daganzo (1995b) has argued that higher-order models are flawed because they are not
anisotropic, implying that vehicles do not only react to there leader but also on there
follower, which results in vehicles driving backward. In general anisotropy implies
that characteristic waves are not faster than vehicles, which is discussed extensively
in Chapter 3 and 7. In the time Daganzo’s article was written, existing higher-order
models were indeed not anisotropic. Since then, many efforts have been undertaken
to resolve the problems. Probably the most well-known of them is the model by Aw
& Rascle (2000). They propose to use instead of Payne’s velocity equation (2.29) the
following velocity equation:

2 (o)) F v (v p(p) =0 2.30)
with p(p) a ‘pressure’ term. The (increasing) function p(p) can have different forms,
but p(p) = p¢ with some constant ¢ > 0 is proposed as the prototype. In this model,
when parameters have been chosen correctly, characteristic waves can not be faster
than vehicles. This is also the case in Zhang (1999)’s model which is an adaptation of
Payne’s model which includes hysteresis. The model by Aw & Rascle was developed
further by Greenberg et al. (2003) to include multiple lanes. A multi-class version of
the model has been proposed in the same year (Bagnerini & Rascle, 2003). Further-
more, Lebacque et al. (2007) develop a generalized higher-order model that includes
the models by Aw & Rascle (2000); Zhang (1999) as special cases.

Finally, Aw et al. (2002); Moutari & Rascle (2007) develop a hybrid model that couples
the model by Aw & Rascle with a microscopic version of it. Similarly to Leclercq
(2007a) they simplify the coupling by applying the Lagrangian formulation of the mac-
roscopic model, based on a moving (Lagrangien) coordinate system. The Lagrangian
formulation of macroscopic models is discussed in more detail in Chapter 6.

2.5 Discussion

In the previous sections many traffic flow models and their position in the model tree
have been discussed. In the model tree several trends can be identified:

e Certain branches converge to a generalized model. The generalized model can be
used to analyze qualitative properties of all models of that branch (Wilson, 2008;
Hoogendoorn & Bovy, 2001a; Del Castillo, 2012; Van Wageningen-Kessels
et al., 2011b).

e The LWR model is extended and adapted to better reproduce key phenomena
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such as the capacity drop, hysteresis and scattered fundamental diagrams (Zhang,
1999; Lebacque, 2002; Wong & Wong, 2002).

e Multi-class versions of previously developed models are introduced (Hoogen-
doorn, 1999; Bagnerini & Rascle, 2003; Ossen & Hoogendoorn, 2006), and es-
pecially multi-class kinematic wave models (Wong & Wong, 2002; Benzoni-
Gavage & Colombo, 2003; Chanut & Buisson, 2003; Zhang et al., 2006; Laval
& Daganzo, 2006; Ngoduy & Liu, 2007; Logghe & Immers, 2008; Van Lint
et al., 2008; Nair et al., 2012).

e Hybrid models combine microscopic and macroscopic models (Bourrel & Le-
sort, 2003; Leclercq, 2007a; Moutari & Rascle, 2007).

In the next chapters, we combine the trends in the development of a multi-class ki-
nematic wave traffic flow model. It reproduces scattered fundamental diagrams. Fur-
thermore, we generalize the model such that it allows for a qualitative analysis of the
properties of this and similar models. Finally, we propose a reformulation (in Lagrang-
ian coordinates) which simplifies hybridization of the model. In the rest of this chapter,
we argue why we chose to further develop multi-class kinematic wave models and not
any other type of traffic flow model. Therefore, we discuss the relations between traffic
flow models and other types of mathematical models are discussed in Section 2.5.1. In
Section 2.5.2 we discuss criteria for traffic flow models and we discuss to what extend
the models satisfy these criteria.

2.5.1 Traffic flow, fluid flow and complex systems

Traffic flow models are often related to and derived in analogy with models for fluid
flow. For example, the seminal paper on macroscopic traffic flow modelling (Lighthill
& Whitham, 1955b), was published as ‘On Kinematic Waves Part 2’ together with Part
1 discussing flood movement in rivers (Lighthill & Whitham, 1955a). In turn, traffic
flow models have recently inspired researchers to model pedestrian crowds and animal
swarms in a similar way, cf. Bellomo & Brezzi (2008), other articles in that special is-
sue of Mathematical Models and Methods in Applied Sciences on Traffic, Crowd, and
Swarms and by Bellomo & Dogbe (2011). Furthermore, similarities between vehicular
traffic, pedestrian and granular flow have been recognized and conferences on Traffic
and Granular Flow are organized bi-annually, the most recent one being held in Mos-
cow in 2011 (Traffic and Granular Flow, 2011). Finally, Helbing (2008) relates traffic
flow to systems that might even seem more diverse such as those related to collective
decision making, risk management, supply systems and management strategies. Sim-
ilarities and differences between fluid flow modelling and traffic flow modelling are
discussed in more detail below.

Despite the similarities between traffic and fluid flow, dissimilarities have been stressed
as well. Papageorgiou (1998) argues that there is hardly any hope that traffic flow mo-
dels will ever have the same descriptive accuracy as models in other domains such
as Newtonian physics or thermodynamics. This is because 1) vehicles and humans
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(drivers) all behave differently, and change there behaviour over time, unlike mo-
lecules of which the behaviour follows (usually simple and constant) physical laws,
and 2) there are relatively few vehicles in the area of interest (at most a few hundred
per kilometer), unlike in for example thermodynamics with around 10?3 particles per
cm’.  The second reason is also used by Darbha et al. (2008); Tyagi et al. (2008);
Bellomo & Dogbe (2011) to argue that aggregating vehicles to develop a macroscopic
traffic flow model is not justified. Furthermore, in fluid mechanics the Knudsen number
is often used to choose between a continuum (macroscopic) or a particle (microscopic)
approach. The Knudsen number is the ratio of the mean free path over a representative
physical length scale. Only if it is much smaller than 1, can the fluid be approximated
as a continuum. In vehicle flow the Knudsen number would be the following distance
over a section length. Tyagi et al. (2008) argue that the Knudsen number is small
enough (1073). However, in free flow (e.g., 100 meter following distance) on short
sections (e.g., of 100 meter) the Knudsen number is much larger than 1073 and the
continuum approach is not justified. Still, Papageorgiou’s first observation (drivers do
not behave like molecules) shows that fluid flow and traffic flow are dissimilar in other
aspects. Therefore, comparison of ratios such as the Knudsen number or the number
of particles per region of interest can not be the only reason to justify (or falsify) a mo-
del approach. Therefore, below we discuss some other criteria that can be used when
modelling traffic flow.

2.5.2 Criteria for and assessment of traffic flow models

In the previous sections we have already discussed some criteria for a limited class
of models. Criteria for the fundamental relation (Del Castillo, 2012) are reviewed in
Section 2.1, criteria for safe-distance and stimulus-response models (Wilson, 2008;
Wilson & Ward, 2011) are reviewed in Section 2.2.2. Criteria for kinematic wave
models and multi-class kinematic wave models are discussed in Chapter 3. Criteria for
a broader range of traffic flow models include (Hoogendoorn & Bovy, 2001b; Helbing,
2001; Bellomo & Dogbe, 2011):

1. The model only has few parameters.

2. Parameters are (easily) observable and have realistic values.

3. Relevant phenomena are reproduced and predicted by the model.
4. The model allows fast numerical simulation.

The criteria are applicable to other types of models as well. However, in the following,
the criteria are discussed in more detail for traffic flow models.

Number of parameters

Traffic flow models are often criticized for having many parameters, whose values are
difficult to observe and estimate because of the dynamics of the system (Orosz et al.,
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2010). Especially microscopic models are often said to have too many parameters
(Brackstone & McDonald, 1999; Bellomo & Dogbe, 2011). Furthermore, in micro-
scopic models stochasticity is often taken into account, which increases the number of
parameters because not only the average value of the parameters has to be estimated
but also their distribution. Moreover, microscopic models for multiple lane necessarily
also include lane changing models, which increases the number of parameters further.
Even without taking into account stochasticity and lane changing, most of the micro-
scopic models have more parameters than the macroscopic models introduced in this
chapter. An extreme example is the Deterministic Acceleration Time Delay Three-
Phase Traffic Flow Model based on Three-Phase-Theory with, in its simplest form, 19
parameters (Kerner, 2009). The number of parameters in some microscopic and mac-
roscopic, mixed-class and multi-class models is compared in Figure 2.12. Therefore,
it is assumed that parameter values may vary over classes and over links, as in Table
2.1. By varying parameter values over classes heterogeneity of drivers and vehicles
is taken into account. By varying parameter values over links it is taken into account
that networks are usually not homogenous but consist of different type of roads (e.g.,
motorway and urban roads) with different characteristics (e.g., number of lanes, speed
limit). Furthermore, we assume that the parameter values are independent. The ana-
lysis may become more realistic by taking into account that some parameters are not
independent but, for example, a link with a high critical density, probably also has a
high jam density and a class with a high free flow velocity v, on a three-lane motor-
way, probably also has a high free flow velocity on a two-lane motorway.

Figure 2.12 shows that for mixed-class models on one link the number of parameters
is 2 (simplified Newell model) to 6 (IDM, 1 class). However, if the number of classes
increases, the number of parameters increases quickly. For macroscopic models the
number of parameters increases from 4 (LWR) to 20 (Fastlane with 6 classes). For
microscopic models it increases from 6 (IDM, mixed-class) to 31 (IDM, 6 classes).
The figure furthermore shows the dependence on the number of links. If the number
of links increases, the number of parameters increases as well. The rate of increase
depends largely on the number of classes: if there are only few classes, the number of
parameters remains relatively low. We conclude from Figure 2.12 that the number of
parameters in a mixed-class microscopic model for one link may be comparable to that
of a mixed-class macroscopic model for one link. The number of parameters in more
realistic applications, however, depends largely on the number of links and the number
of classes. Still, given the number of classes, the number of parameters in macroscopic
models is, in general, lower than that in microscopic models.

Observable parameters with realistic values

Traffic flow models often include parameters that are not easily observable or even
have no physical interpretation at all. For example, the constants ¢; and c¢; in the
GHR model and the acceleration exponent 0 in the IDM have no physical interpreta-
tion and are only used to fit the simulation results to data. Other parameters such as
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Table 2.1 Parameters of traffic flow models compared in Figure 2.12.

Model Type of parameter
and (if appropriate) Class-independent Class-specific
fundamental relation Link- Link- Link- Link-
independent specific independent specific
Simplified Newell T Sjam
OVM C1 Or ¢ Yu Vmax,u
Sjam,u
IDM o Qmax, U Vmax,u
Amin,u 1,
Sjam,u
LWR, Smulders w Perit
pjam
Vmax
Chanut & Buisson (2003)!  w Perit Lyu#1  Vmaxu
Pjam
Fastlane w Perit Lyu#1 Vmax,u
Pjam T,
Payne, Daganzo w Perit
Irelax Pjam
c

! The original formulation includes other parameters, these parameters are based on the reformulation
in Chapter 5.
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Figure 2.12 The number of parameters for several micro- and macroscopic models as a
function of the number of links in the network. The numbers between brackets indicate
the number of classes. Both in the LWR and in the Payne model we use Daganzo’s
fundamental relation. The multi-class kinematic wave models by Chanut & Buisson

and Fastlane include the Smulders fundamental relation.
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maximum and minimum acceleration amax and ap;, do have a physical interpretation
but are not easily observable. To observe those parameters one would need detailed
trajectory data including observations where this maximum (or minimum) accelera-
tion is realized. Furthermore, microscopic traffic flow models often take into account
stochasticity. This not only increases the number of parameters, but also makes them
less easily observable.

Similar arguments hold for models including a fundamental diagram. The critical and
jam density can only be observed if the data includes moments where traffic is in such
as state. However, fundamental diagram estimation is becoming easier since the ob-
servation that the relation between density and flow is linear for large densities and
its slope is constant over many observations (Cassidy & Windover, 1995; Kerner &
Rehborn, 1996; Treiber & Helbing, 2002). Furthermore, traffic flow models are some-
times criticized for having unrealistic parameter values. For example, Brackstone &
McDonald (1999) concluded that contradictory findings on parameter values ¢ and ¢,
in the GHR model are the main reason why it is being used less frequently. Unrealistic
parameter values also play a role in macroscopic models. The relaxation time fe[ax in
the Payne model is derived from the reaction time of a car-following model. However,
its value has been estimated to be up to 30 seconds (Grewal & Payne, 1976).

Reproduction of phenomena

Many phenomena can be observed in traffic flow. Simple and easily observable ones
include lower velocities at smaller headways, which is reflected in fundamental rela-
tions. Another example is spill-back of congestion: vehicles in a queue take up space
and block parts of the road. Other phenomena include capacity drop and hysteresis.
Recently, much attention goes to stop-and-go waves (Kerner & Rehborn, 1996). A
stop-and-go wave is a heavily congested traffic state consisting of few vehicles that
propagates upstream. Before and after the stop-and-go wave, traffic is much less con-
gested or even in free flow. Some authors argue that all experimentally observed
features, including stop-and-go waves should be reproduced by a traffic flow model
(Helbing, 2001; Kerner, 2009; Bellomo & Dogbe, 2011). However, we believe that
it largely depends on the model application whether such more complex phenomena
need to be reproduced (Papageorgiou, 1998; Van Wageningen-Kessels et al., 2011a).
Here, a comparison with fluid models is again appropriate. In some applications, such
as the design of the propellor of a ship, it is very useful to know the details about tur-
bulence, in others, such as climate predictions only large scale effects of turbulence
need to be taken into account. Similarly, predicting the emergence and propagation of
stop-and-go waves can be useful in some situations, for example, if one wants to warn
drivers of unsafe situations such as stop-and-go waves. However, for relatively coarse
predictions on large networks (the motorways of a metropolitan city) over long periods
(one hour or more) it may not be necessary to predict individual stop-and-go waves.
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Table 2.2 The number of calculations of the traffic state for a micro and macro model
with typical numerical settings.

Micro Macro
congestion, free flow, high low
3 lanes 1 lane resolution  resolution
average density (veh/km) 300 10
segment length (m) 100 200
time step size (s) 1 1 1 6
state calculations per kmxmin 18000 600 600 50

Fast numerical simulation

Microscopic models are in general computationally more demanding than macroscopic
models, for two main reasons. First, the traffic state is calculated more often. In mac-
roscopic models the road is usually divided into segments of a few hundred meters.
The traffic state (density, velocity, flow) at each segment are calculated every time step
of a few seconds. In microscopic models time steps are usually smaller and vehicles
are not aggregated, instead the state (position, velocity, acceleration) of each vehicle
is calculated. Furthermore, in microscopic models the number of calculations depends
on the actual number of vehicles and therefore on the traffic state. Table 2.2 shows
that in a microscopic model the state is computed up to several hundreds times as often
as in a macrosopic model. Note that this does not necessarily mean that it is several
hundreds times as slow: each state computation might take much less or more time
than in a macroscopic model. Second, microscopic (and mesoscopic) models are often
stochastic and simulation results vary each run. This is at least partly due to stochastic
inflow at the inflow boundary. Therefore, many simulations are needed before con-
clusions can be drawn on the results. Furthermore, stochastic models are not tractable
and therefore filtering and optimal control is much more difficult, if at all possible.
Microscopic models do remain important because it depends largely on the applica-
tion whether fast numerical simulation is necessary. However, we have already argued
in the Introduction (Chapter 1) that new applications will continue to ask for faster
simulations. Therefore, we will develop even more efficient computational methods
for macroscopic models in Chapter 8.

2.6 Conclusions

In this chapter we proposed a model tree showing the genealogy of traffic flow models.
Furthermore, we introduced criteria for such models and discussed how well certain
types of models satisfy the criteria. The criteria can be in conflict with each other.
In particular, accurately reproducing phenomena is in conflict with the other criteria
because it requires more complex models with more, possibly not easily observable,
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parameters. Furthermore, more complex models may also lead to more complex, and
thus less efficient, numerical simulations. Wilson (2008) has argued that ‘we can ex-
pect over the next few years to definitively resolve the conflict between the various
traffic modelling schools’, using novel, more detailed data. However, in each applica-
tion the weights of the various criteria may be different. That is why the model tree
shows divergence and many different branches have developed.

However, when analyzing the model tree we also observe convergence of certain bran-
ches of traffic flow models to a generalized model. The generalized models are applied
to qualitatively assess models and to eliminate models with unwanted features. Having
better knowledge on traffic flow may help to eliminate models with unwanted features,
but it will not result in one model that is suitable in all applications. In fact, some
applications call for models to be combined and coupled. This has led to the second
trend in the model tree, namely the development of hybrid models combining micro-
and macroscopic models. Furthermore, within the macroscopic family we observe that
the LWR model has been adapted and extended to include more realistic features such
as capacity drop and hysteresis. Moreover, multi-class versions of macroscopic models
are under rapid development, also aiming at better reproducing certain characteristic
features of traffic flow consisting of heterogeneous vehicles and drivers.

In the next chapters we develop and analyze a model that is aimed at online real time
traffic flow prediction. However, the model may also be used in many other applica-
tion that require fast numerical simulation but do not require accurately reproducing
all phenomena such as stop-and-go waves and capacity drop. Therefore, we chose to
combine some trends in the model tree. We further develop and analyze multi-class
kinematic wave models. This type of models has few parameters compared to micro-
scopic multi-class models. It does have more parameters than mixed class kinematic
wave models but it can, in contrast to those models, reproduce scattered density-flow
plots. Furthermore, numerical simulations can be done faster than microscopic simu-
lations and we develop methods to make simulations even faster.



Chapter 3

Theoretical framework for multi-class
kinematic wave traffic flow modelling

In this chapter we develop a framework within which we develop our traffic flow mo-
del: Fastlane. The framework consists of a set of principles and a set of requirements.
The principles form the foundation on which we base the model in Chapter 4. The
principles are partly common for all continuum traffic flow models, partly specific for
multi-class kinematic wave models. The principles are used to build the model. The
requirements are used afterwards to verify that the developed model has qualitatively
desirable properties. The requirements relate to the model formulation, the fundamen-
tal relation and the model dynamics. The analysis of the model in Chapter 7 shows
that our model, in contrast to some other models, indeed satisfies all requirements.

In this and the following chapters we restrict the theory and model development, ana-
lysis and numerical methods to infinitely long homogeneous roads. In Chapter 10 we
extend all this to networks, including inflows, outflows and nodes at which roads merge
or diverge or road properties change.

The outline of this chapter is as follows. Section 3.1 discusses the principles. In Section
3.2 the requirements are introduced.

3.1 Principles

The foundation of Fastlane is three groups of principles. The first group is common for
all continuum traffic flow models. It consists of a conservation law and the continuum
assumption. The second group consists of assumptions on the common behavior of
vehicles and their interactions. They are applied in most kinematic wave models. The
third group relates to behavioral differences between groups of vehicles and drivers.
They form the basis of our multi-class modeling approach. The principles are as fol-
lows:
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Continuum model principles:

1. Vehicles are conserved.

2. Traffic flow is a continuum flow.
Kinematic wave model principles:

3. Traffic flow is a single-pipe flow.

4. Traffic is always in equilibrium state.

5. Traffic flow is always in either of two regimes: free flow or congestion.
Multi-class model principle:

6. Traffic consists of homogeneous groups (classes) of vehicles and drivers.

Principles 3, 4 and 5 have been relaxed in some continuum models to better reproduce
scattered density-flow plots. Fastlane reproduces scattered density-flow plots due to
its multi-class approach (Principle 6). The principles are discussed in the following in
more detail. We note that the principles are defined independently. Therefore, if one
relaxes one or more of the principles, the others may still be used to build a traffic flow
model.

3.1.1 Continuum model principles

Principle 1 is the single undisputed principle in traffic flow modelling. It states that
vehicles are conserved. This means that vehicles can only enter the system through
inflow at the boundaries and that they only leave the system through outflow at the
boundaries. Vehicles are not created in the system itself, nor do they disappear. To the
best of our knowledge, this principle is included in all traffic flow models.

Principle 2 assumes that vehicles can be aggregated and that the traffic state can be de-
scribed by aggregate continuum variables such as density, flow and average velocity.
All continuum models are based on this principle. Naturally, microscopic models are
not based on this principle. In Section 2.5 we discussed the controversy around model-
ling traffic as a continuum flow. We concluded that, depending on the application, the
advantages of continuum models outweigh the possibly less realistic representation of
some traffic flow phenomena.

3.1.2 Kinematic wave model principles

Principle 3 assumes that traffic behaves similar to a flow in a single pipe. Traffic
state variables such as density, flow and velocity are aggregated over all lanes and
interactions between lanes are not taken into account explicitly. Therefore, overtakings
are not taken into account explicitly. The single-pipe principle is relaxed in multi-lane
models, which can be either mixed-class or multi-class.

Principle 4 assumes that traffic is always in an equilibrium state that is described by
the fundamental relation. For example, in mixed-class continuum models, given the
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Figure 3.1 Fundamental diagram with 2 regimes: free flow and congestion.

current density, the flow and velocity do not depend on previous traffic states: it does
not matter whether vehicles accelerate or decelerate. A consequence of this principle
is that drivers adapt their velocity instantaneously to new traffic conditions such as a
change in density. This implies that fundamental relations with hysteresis (see e.g.,
(Newell, 1965; Treiterer & Myers, 1974; Zhang, 1999), Figure 2.8(b)) can not be
achieved. The principle is relaxed in the LWR model with bounded acceleration and
in higher-order models.

Principle 5 assumes that there are two traffic flow regimes, see Figure 3.1. In free flow,
if the density increases (a vehicle is added) the flow also increases. In congestion, if the
density increases the flow decreases. In between those two regimes, maximum flow is
reached. This point is often called capacity or capacity flow. The corresponding den-
sity and velocity are called critical density and critical velocity. Their values depend
on the number of vehicles, but may also depend on traffic composition (e.g., percent-
age of heavy vehicles). Principle 5 is used in almost all continuum traffic flow models,
however, it is relaxed in the three-regime multi-class model (Logghe & Immers, 2008).
This model is discussed in more detail in Chapter 5.

3.1.3 Multi-class model principle

Principle 6 assumes that vehicle-driver units may differ and do not behave identically.
They can be categorized into homogeneous classes: within one such class vehicles
and drivers behave identically. As a consequence, each class may have a different
fundamental relation. Mixed-class models such as the LWR model and many other
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kinematic wave models and higher-order models assume that there is only one class
and all vehicles and drivers behave identically. In multi-class models there may be two
or more such classes.

The distinction between classes is made based on the physical properties of the vehicle
and the driving style of the driver. This will result in classes that differ in, for example,
maximum velocity, vehicle length and headway. In principle, vehicle properties and
driving style may change over time and may depend on the traffic state. For example,
a driver that becomes tired may increase his headway, and velocity may depend on
weather conditions. Furthermore, vehicle classes can also be based on their origin,
destination and route. This becomes especially interesting when networks need to be
simulated. Throughout this dissertation classes are based on the physical properties of
the vehicle and the driving style of the driver which are assumed to be static. However,
the methods and analysis can be generalized to classes based on other criteria such as
origin, destination or route. With some effort, vehicle properties and driving style can
be made time-dependent.

3.2 Requirements

All traffic flow models should satisfy certain requirements. In Chapter 2 we dis-
cussed requirements on the fundamental relation introduced by Del Castillo (2012)
and requirements on car-following models by Wilson (2008); Wilson & Ward (2011).
Furthermore, we discussed the anisotropy criterium for continuum models (Daganzo,
1995b). For multi-class kinematic wave models, we formulate several qualitative re-
quirements. Two requirements are related to the model formulation. The other re-
quirements are related to the outcome of the model: the model must reproduce certain
phenomena. These can be split into phenomena related to the shape of the fundamen-
tal relation and phenomena related to the dynamics of the model. We argue that any
multi-class kinematic wave traffic flow model should satisfy the following qualitative
requirements:

Model formulation requirements:
1. Given ‘permissible’ class-specific densities, (class-specific) velocities and flows
are defined uniquely.
2. The model has a unique solution that maximizes flow.
Fundamental relation requirements:
3. In free flow the velocities of each class are allowed to differ.
4. In free flow the velocities of relatively fast classes are allowed to decrease with
increasing density.
5. In congestion the velocity of each class is equal.
6. If the density reaches a certain threshold (which may depend on the traffic com-
position), vehicle velocity is zero.
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Figure 3.2 [llustration of the fundamental relation requirements for a three-class mo-
del.

7. If the density of only one class increases, while all other class-specific densities
remain constant, vehicle velocities do not increase.
Model dynamics requirements:
8. Characteristics have finite velocity.
9. Characteristics do not have a larger velocity than vehicles.

The fundamental relation requirements are illustrated in Figure 3.2. All other require-
ments are discussed in more detail below.

3.2.1 Model formulation requirements

Requirement 1 states that there is one unique solution to the model equations, given
‘permissible’ class-specific densities. This implies that the model is formulated such
that the state (velocity, flow) only depends on the density and composition and not on,
for example, previous traffic states. ‘Permissible’ means that the given class-specific
densities must be nonnegative and not above the threshold above which the velocity
becomes zero (Requirement 6). It will become clear later (in Section 4.5) that Re-
quirement 1 is not trivial.

Requirement 2 also states that the model has a unique solution. But rather, this re-
quirement states that a well-posed initial value problem has a unique solution and that
this solution maximizes flow. In relation to mixed-class models this solution is often
referred to as the entropy solution. Ansorge (1990) introduced the entropy solution for
traffic flow models in analogy to the entropy solution of gas flow models. Only after
the discussion by Lebacque (1996), did traffic flow modellers become aware about it
widely. Ansorge explains that the (mixed-class) kinematic wave traffic flow model has
multiple weak solutions. For example, the solution where all vehicles in a queue re-
main at their position after a traffic light has turned green is a mathematically correct
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(weak) solution of the model (2.23). Therefore, the ride impulse or flow maximization
requirement is added to the model. This requirement selects out of all weak solutions
the physically relevant one. In the traffic light example, that is the solution in which
vehicles start driving as quickly and as fast as local conditions permit once the traffic
light has turned green. Selecting the solution that maximizes flow, implies that vehicles
drive as fast as possible given local traffic conditions.

Requirement 2 states that also in multi-class models the flow must be maximized lo-
cally and that vehicles drive as fast as possible given local traffic conditions. However,
this does not necessarily yield a unique solution. Therefore, one has to consider which
flow must be maximized. For example one may maximize the total flow in vehicles per
second. Alternatively, the flow in passenger car equivalents per second may be maxi-
mized. The multi-class kinematic wave model is complete only if it defines a flow to
be maximized.

3.2.2 Fundamental relation requirements

Requirements 3, 4 and 5 are important in multi-class models. Requirement 3 states
that if density is below critical density, velocities of each class should be allowed to
be different. It is not necessary that they are so for all possible parameter settings,
but it must be possible to set the parameters such that the class-specific velocities are
unequal. Requirement 4 states that the model must allow class-specific velocities to
be decreasing in free flow. Again, it is not necessary that velocities are decreasing for
all possible parameter settings, but it must be possible to set the parameters such that
they are. Requirement 5 states that if density is above critical density (i.e. traffic is in
congestion), velocities of all classes are equal.

We note that Requirements 3 and 5 are only relevant on multi-lane roads. On single-
lane roads, without overtaking, velocities are naturally equal. Furthermore, Require-
ments 3, 4 and 5 are in line with observed decreasing car velocity even at low densities,
unequal velocities of cars and trucks at low densities and equal velocities at high densi-
ties (Hoogendoorn, 1999, Chapter 8; Chanut, 2005). Requirement 5 is also in line with
observed low velocity variance at high densities (Kerner & Rehborn, 1996; Helbing,
1997a).

Requirement 6 may seem trivial: if there are too many vehicles, they will come to a
complete stop. However, not all fundamental relations applied in multi-class models
satisfy this requirement (see Chapters 5 and 7). Del Castillo (2012) also formulates
this as a requirement for the fundamental relation.

Requirement 7 states that if one vehicle is added to (removed from) the flow, the vehicle
velocities of all classes do not increase (decrease). This is logical: if there are more
vehicles, they do not drive faster, if there are fewer vehicles, they do not drive slower.
In the mixed-class LWR model, this holds if the density-velocity fundamental relation
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is nonincreasing. Del Castillo (2012) includes this requirement by stating that the
density-flow fundamental relation should be concave (see Section 2.1.3).

3.2.3 Model dynamics requirements

Requirements 8 and 9 relate to the direction and speed of information propagation.
Or, to put it differently, they relate to whether and how quickly vehicle-driver units
react to other vehicle-driver units. Curves along which information propagates are
often called characteristic curves, characteristic waves or simply characteristics. Along
characteristics the traffic density is constant. In mixed-class kinematic wave models,
the characteristic velocity is equal to the slope of the density-flow fundamental relation.
A more rigorous (mathematical) definition of characteristics will be given in Chapter
7. Requirements 8 and 9 put limits on the value of the characteristic velocity.

Requirement 8 states that characteristics have finite velocity. It can be interpreted as
follows: perturbations, such as a sudden braking operation of a driver, do not influence
all drivers at once. Instead, it takes some time before other drivers will react, if they
do so at all. For a model, this means that the characteristic velocity is bounded. This
implies that there are no discontinuities in the fundamental relation, or there must be
consistent rules on how to get from one branch to the other (Zhang, 2001).

Requirement 9 states that characteristic velocity (the velocity with which the charac-
teristic travels downstream) is not larger than vehicle velocity (the velocity with which
the vehicles travel downstream). This implies that the model is anisotropic. It can be
interpreted as follows: perturbations, such as a sudden braking maneuver, only influ-
ence followers of the vehicle that brakes and do not influence vehicles in front of it. For
a model, this means that the characteristic velocity is not higher than vehicle velocity.

The anisotropy requirement (Requirement 9) has received much research attention over
the past two decades. Daganzo (1995b) initiated an ongoing debate on whether or not
higher-order models are anisotropic and whether traffic flow models need to be (Aw &
Rascle, 2000; Zhang, 2001, 2003; Helbing & Johansson, 2009; Zhang, 2009; Helbing,
2009). Traffic is supposed to be anisotropic because drivers usually do not react to
their followers. Zhang (2003) argues that this does not imply that characteristics of
the model should not be faster than the average vehicle velocity. This is because on
roads where vehicles may overtake each other some vehicles may be faster than others.
Those faster-than-average vehicles may also carry information with them. This would
imply that the related characteristic is faster than the average vehicle velocity. This
issue is addressed, at least partly, by splitting the vehicles into classes with different
velocities. Still, in reality, the fastest vehicle may be faster than the average velocity of
the fastest class.
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3.3 Conclusions

Multi-class kinematic wave traffic flow models are based on principles that are com-
mon for all continuum traffic flow models. Some principles that were used in the LWR
model have been relaxed previously. We relax the principle that all vechicle-driver
units are identical and use a multi-class approach to reproduce scattered density-flow
plots. Both the Fastlane model that is introduced in the next chapter (Chapter 4) and
other multi-class models (see Chapter 5) are based on these principles.

Multi-class kinematic wave traffic flow models should satisfy qualitative requirements
related to the model formulation, the applied fundamental relation and model dynam-
ics. In Chapter 7, we show that Fastlane satisfies the requirements. Furthermore, we
develop and apply a framework for the qualitative assessment of multi-class kinematic
wave models.



Chapter 4

Model development: Fastlane

In this chapter we develop the Fastlane model. It consists of a system of equations,
including the multi-class version of the conservation of vehicles equation and a fun-
damental relation. The principles in the previous chapter (Chapter 3) are used as the
foundation of the model. Furthermore, we set some reasonable conditions on the values
of the model parameters. In Chapter 7 we show that, if these conditions are satisfied,
the model also satisfies the qualitative requirements introduced in Chapter 3.

The outline of this chapter is as follows. Section 4.1 introduces the variables and
parameters of the model. Sections 4.2 and 4.3 introduce the model equations: the
multi-class conservation of vehicles equation (Section 4.2) and the multi-class funda-
mental relation (Section 4.3). In Section 4.4 we set some ‘reasonable’ conditions for
the model parameters. We interpret the conditions and show that they do not imply too
strict limits on the parameter values. Finally, we note that the fundamental relation and
effective density function as we introduce them in Section 4.3 are not well formulated:
they do not uniquely define the velocities. Therefore, we reformulate them in Section
4.5, using the conditions from Section 4.4. At the end of this chapter (Section 4.6) we
recapitulate the model.

4.1 Variables and parameters

Before introducing the model equations, we introduce its variables and parameters.
For future reference a list of symbols, including variables and parameters is included
on page 16.

4.1.1 Variables

Fastlane is based on the principle that traffic flow can be modelled as a continuum flow
(Principle 2). Therefore, the variables describe traffic state in aggregated terms such
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as density and flow. Due to the heterogeneity principle (Principle 6) the variables are
class-specific. class-specific density, velocity and flow are defined similar to the defin-
itions for mixed-class traffic flow (Definition 2.1-2.4, see Section 2.1.1). However,
only vehicles of the class under consideration are taken into account. We define:

Definition 4.1 (class-specific flow).

: Nu(xv[l7t+dt])
,t) = lim 4.1
9u(x:1) dr—0 dr 1)
with N, (x, [z, 4 df]) the number of vehicles of class u that cross location x between
or at times ¢ and 7+ d¢. Since traffic flow is assumed to be a continuum flow, N,, is
supposed to be continuous and furthermore it is supposed to be continuously differen-
tiable.

Definition 4.2 (class-specific density).

pul,t) = fim Nelbox+dd,)

4.2
dx—0 dx (4.2)

with N, ([x,x + dx|,7) the number of vehicles that are present on the location between
or at x and x + dx at time ¢.

Definition 4.3 (class-specific vehicle velocity).

vu(x,1) = ZZE? 2 (4.3)

Later, we also need the class-specific spacing, which is defined analogously to the
spacing in mixed-class models (Definition 2.4):

Definition 4.4 (class-specific spacing).

su(x,1) = (4.4)

pu(x,t)

4.1.2 Parameters

Furthermore, Fastlane includes several parameters. The class-specific maximum velo-
City vy max, Critical velocity very, critical density perje and jam density pja, are used in
the fundamental relation. The class-specific gross vehicle length L, and class-specific
minimum time headway 7, are used in the space occupancy function. All these para-
meters are supposed to be nonnegative and furthermore critical density and all gross
vehicle lengths should be positive (peit > 0 and L, > 0).
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4.2 Conservation of vehicles

The multi-class conservation equation describes that vehicles of each class are con-
served (Principle 1):

dpu

S (1,2) + 94 (t,x) =0 4.5)

ox

For readability we will omit (¢,x) in the following. Since we model the road as a single
pipe (Principle 3), we do not need to distinguish lanes.

Using Definition 4.3 the class-specific flow is:

9u = PuVu (4.6)

vu = vu(p1,...,pv) is some function of the traffic state defined by all class-specific
densities. It is defined by the fundamental relation which will be introduced in the next
section.

4.3 Fundamental relation

We apply the equilibrium principle (Principle 4). Consequently, we assume that traffic
is always in a state described by the fundamental relation and the velocity only depends
on the current traffic state. Below we define the fundamental relation. It expresses the
velocity as a function of the effective density. The effective density is, in turn some
‘total density’ or ‘accumulated density’ based on all class-specific densities. To define
the effective density we apply the concept of pce-value. The pce-value of class u
expresses the impact on the flow of one vehicle of class u. In turn, the pce-value of
class u is based on how much road space is occupied by one vehicle of class u in
comparison to the space occupancy of one passenger car.

4.3.1 Shape of the fundamental relation

The shape of the fundamental relation is based on Principle 5 (two regimes: free flow
and congestion) and 6 (homogeneous classes of vehicle-driver units). Therefore, we
define a fundamental relation that may differ for each class. However, for a given
traffic state, either all classes are in the free flow branch, or all of them are in the
congestion branch. Furthermore, in free flow the velocities of each class may differ
(Requirement 3), in congestion they are equal (Requirement 5). The Smulders funda-
mental relation (Smulders, 1990) allows for a multi-class generalization that satisfies
these requirements. Furthermore, it is itself a generalization of other fundamental re-
lations introduced in Section 2.1.2: the Daganzo fundamental relation and the Green-
shields fundamental relation (see Section 2.1.2). We note that both the Daganzo and
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Greenshields fundamental relations do not allow for multi-class generalizations with
different velocities in free flow while still having only two regimes and being con-
tinuous. The mixed-class Smulders density-velocity fundamental relation is (see also
Figure 2.5(c)):

Vmax — Verit

Vmax — ———P (free flow, 0 < p < Perit) (4.7a)
Perit

Piam _ 1) (congestion, Perit < P < Pjam)  (4.7b)

v=v(p) =
G

The multi-class Smulders fundamental relation is shown in Figure 4.1. The congestion
branch is equal to that of the mixed-class fundamental relation. The only difference
is the value of the maximum velocity, and consequently the slope in free flow. The
multi-class fundamental relation is described by the following equations:

Vu,max — Verit

Vimax — ———————p (free flow, 0 < p < Perit) (4.8a)
Vo= (P) _ Perit
w <’)J% — 1) (congestion, Perit < P < Pijam) (4.8b)

with v, max maximum velocity of class u, v critical velocity, which is reached at
critical density pcri¢ and jam density is Pjam. Here w is class independent a parameter
defined by:

Ww— PeritVerit 4.9)
Pjam — Perit

If all vehicles are of class 1, then effectively the model reduces to a mixed-class model
and w is the characteristic wave speed in congestion.! However, as we will show in
Chapter 7, if the composition changes, the characterstic velocity can change as well
and is not necessarily equal to —w. Finally, we note that the fundamental relation
(4.8) is continuous: at critical density both the velocity in the free flow branch and the
velocity in the congestion branch are equal to the critical velocity veyis.

4.3.2 Effective density

We propose a definition of the effective density. In Section 4.5, however, it turns out
that this formulation does not lead to a unique effective density. Therefore, we refor-
mulate the effective density in Section 4.5. However, the definition that we introduce
here is easier to derive and interpret.

We define the effective density as a weighted summation of the class-specific densities:

P =) MuPu (4.10)

'If p = p; then in congestion the characteristic velocity is dg/dp = dg;/dp; = d(p1v1)/dp; =
p1dvi/dp; +vi = p1(Wpjam/P*)(dp /dp1) +w(Pjam/P — 1) = WPjam/P + W(Pjam/P — 1) = —w.
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Figure 4.1 Multi-class version of Smulders fundamental relation. The velocities and
Sflows of two-classes (cars (solid line) and trucks (broken line)) are shown as a function
of the effective density.

where the pce-value 7, is the weight of class u. It depends on its relative space

occupancy:
o
=— 4.11
=y (4.11)
with the space occupancy:
@, =L,+T,v, (4.12)

with the minimum time headway 7}, and the gross vehicle length L,. The gross vehicle
length is the physical length of the vehicle plus the gap at complete stop and con-
sequently, on a single lane road:

1
Pjam

Ly (4.13)
The space occupancy (4.12) is equivalent to the tail-to-tail spacing in Pipes’ safe-
distance car-following model (1953), see Section 2.2.1. Figure 2.10 and equation (2.8)
show that the tail-to-tail spacing in Pipes’ model is:

(1 —lp—1)— (n—1) = (n+d+Tvy)— (xn—1) =1L, +d+Tv,
— L,+Tw, (4.14)

The last equality holds if all classes u# have the same minimum time headway: T = T,
and if they furthermore have the same gross vehicle length: [, +d = L, with [, the net
vehicle length from front to tail and d the distance between two vehicles at standstill.

Figure 4.2 shows how the space occupancy depends on the traffic state: in free flow
and at high velocities, the space occupancy is mainly determined by the minimum time
headway. Empirical studies show that the minimum values of observed time headways
of trucks are almost equal to that of cars or at most two times larger (Tilch & Helbing,
2000; Hoogendoorn et al., 2006). Therefore, the headway is similar for both cars and



88 Multi-class continuum traffic flow models: Analysis and simulation methods

L4
9m 23 m

Figure 4.2 Illustration of pce-values. Top: free flow, the space occupancy of a truck
is close to the space occupancy of a car, therefore the pce-value of the truck is low.
Bottom: congestion, the space occupancy of a truck and is much larger than the space
occupancy of a car, therefore the pce-value of the truck is high.

trucks and therefore the space occupancy and pce-value are similar as well. However,
in congestion, the space occupancy is mainly determined by the vehicle length. For
example, Elefteriadou et al. (1997) uses values of 5.2 meters for passenger cars, 12.2
meters for ‘single unit vehicles’, and up to 30.5 meters for long trucks. Therefore,
trucks are longer than passenger cars, their space occupancy and thus also their pce-
value is much larger than that of cars.

4.3.3 Flow maximization

We discuss the entropy requirement (Requirement 2) as the next element of the Fastlane
model. The entropy requirement states that the solution of the model equations maxi-
mizes flow. We require the flow to be maximized to be the effective flow ¢:

q=Y MGu=Y NuPuvu (4.15)

We will need the entropy requirement in Chapter 8 to develop a numerical method to
approximate the unique solution that maximizes the effective flow (4.15).

4.4 Parameter conditions

Even by selecting the solution that maximizes the effective flow (4.15), a unique solu-
tion to the model equations can not be found. We note that (4.8), (4.10), (4.11) and
(4.12) define the effective density implicitly, see also Figure 4.5: the effective density
(4.10) is a function of the pce-values (4.11), which is in turn a function of the space
occupancy (4.12), which is a function of the velocity (4.8), which is a function of the
effective density (4.10), etc. In fact, it appears in Section 4.5 that (4.8), (4.10), (4.11)
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and (4.12) do not define the effective density, nor the velocities uniquely. Therefore, we
redefine the effective density uniquely in Section 4.5. However, for this redefinition,
we need some conditions on the parameter values.

We propose some conditions on the parameters of the model developed in Section
4.2 and 4.3. We show that these conditions are ‘reasonable’: they do not include
too strict conditions and (almost) all realistic parameter values satisfy the conditions.
These conditions are used in the reformulation of the effective density in Section 4.5.
Furthermore, In Chapter 7 we show that if these conditions hold, the model satisfies
the qualitative requirements from Chapter 3.

4.4.1 Conditions on velocity parameters

In the following we show that the velocity parameters of the fundamental relation (4.8)
must be chosen such that for all classes u:

Verit < Vu,max < V1, max < 2Verit (4.16)

Condition (4.16) puts some constraints on the shape of the fundamental relation (4.8)
of each class, and on the connection between the fundamental relations of the classes.
First of all, it states that at critical density, velocities are not higher than at zero density
(Verit < vu,max for all classes u), which is reasonable to require because it implies non
increasing velocity: at critical density, the velocity can not be higher than at zero
density. Secondly, it states that class 1 is faster, or just as fast as all other classes
(Vu,max < V1,max for all classes u). In fact, this condition is not necessary to satisfy the
requirements. Even if the fastest class is not class 1 (v, max > V1 max for some classes u),
the requirements may be satisfied. However, it does make the mathematical analysis
in Chapter 7 easier, without loss of generality. Finally, condition (4.16) states that the
difference between velocity at zero density and at critical density can not be ‘too large’
(Vi,max < 2v¢rit). This part of the condition is related to the maximum flow, or capacity

and 1s discussed in more detail below.

We note that the critical density pg;¢ is defined as the density at which the free flow
branch (4.8a) and the congestion branch (4.8b) of the fundamental relation intersect.
Condition (4.16) implies that the maximum flow (capacity) is reached at critical den-
sity. We show that if the last part of Condition (4.16) is not satisfied, maximum flow
may not be reached at critical density. This implies an unrealistic shape of the funda-
mental relation, as shown in Figure 4.3(b).

Theorem 4.1. If the class-specific densities of all classes u are zero except for class
I and furthermore Vi jmax > 2Verin, then the maximum flow is not reached at critical
density.

Proof. We consider the case with p, = 0 for all u except for u = 1 and consequently
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Figure 4.3 Density-velocity (top) and density-flow (bottom) fundamental relations. If
the maximum velocity is too large when compared to the critical velocity, the maximum
flow is not equal to the flow at critical density.

p1 = p. This results in the following density-flow fundamental relation:

Vimaxp — mx et )2 (free flow)  (4.17a)
q=p1vy =pvy = Perit

w (pjam — p) (congestion)  (4.17b)

This fundamental relation is shown in Figure 4.3. If the situation is as in Figure 4.3(b),
the maximum flow is the flow at the top of the parabola. If, however, the situation is as
in Figure 4.3(a), the maximum flow is the flow at critical density. The latter is the case

if the top of the parabola is not part of the free flow branch. The density at the top of
the parabola is:

Perit

2 (Vl,max - Vcrit)

P = Vi.max (4.18)
Consequently, the top of the parabola is not part of the free flow branch if v| pax >
2(V1,max — Verit), Which is equivalent to vi max < 2vrit. We conclude that the maximum

flow is not reached at critical density if Vi max > 2Vcrit- O]
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Figure 4.4 Schematic view of the condition on the space occupancy parameters, Con-
dition (4.19). The grey areas illustrate the admissible values of 1/T and 1/T, respec-
tively.

4.4.2 Conditions on parameters of space occupancy

In the following we show that the parameters of the space occupancy (4.12) must be
chosen such that for all classes u:

L L

w <
o Tl Tu

(4.19)
Condition (4.19) puts constraints on the space occupancy function (4.12). It relates the
characteristic velocity to the vehicle length and headway. The condition is illustrated
in Figure 4.4(a).

The first inequality of Condition (4.19) implies that, in certain traffic states, space
occupancy can not be larger than the spacing.

Theorem 4.2. Consider any congested traffic state (i.e. Pcrir < P < Pjam) With only
vehicles of class 1 (i.e. p, =0 if u # 1). If the first inequality of (4.19) holds, then the
space occupancy is not larger than the spacing: ®; < s.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/p = 1/p;.
We use the space occupancy function (4.12), the fundamental relation (4.8) and the
definitions of jam density (4.13) and of spacing (s = 1/p) to find:

@ —s =L +Tiw <Li—1)—s (4.20)
1
Rewriting gives:

Li—T
o —s= (L —s) 1L_11w 4.21)
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The term between brackets is nonpositive. If the first inequality of (4.19) holds, then
the fraction is nonnegative and thus the right-hand side is nonpositive. Consequently,
space occupancy is not larger than the spacing: w; < s. ]

Theorem 4.2 implies that, in the congested traffic state with only vehicles of class 1,
no part of the road can be occupied by two vehicles at the same time. That is: their
space occupancies do not overlap.

The second inequality of Condition (4.19) implies that in certain traffic states the pce-
value is nondecreasing.

Theorem 4.3. Consider any congested traffic state (i.e. Perit < P < Pjam) With only
vehicles of class I (i.e. p, =0 ifu # 1). If the second inequality of (4.19) holds for a
certain class u, then the pce-value of this class u is nondecreasing: dn, /dp > 0.

Proof. There are only vehicles of class 1 and thus the spacingis s =1/p =1/p;. We
first show that the velocity is decreasing in congestion:

d .
D gy Piam 4.22)

dp p?

We apply the pce function (4.11) and the space occupancy function (4.12) and use that
vy, = vi and dv,,/dp = dv; /dp to compute the density derivative of the pce vale 7n,,:

i+ 1oL T ™ L
% — v ) Ti — — —L,T1—
dnu B 1 1V1 udp u uVu ldp B 1 udp ldp
dp (01)? (01)?
T, [L, L,]d
_ OL [_1_1] dvy (4.23)
((1)1) T T, dp

We have already shown that the velocity is decreasing (4.22). Therefore, if and only
if the second inequality of (4.19) holds, the term between square brackets in (4.23) is
nonpositive and the pce-value is nondecreasing. ]

Theorem 4.3 implies that, if traffic is more congested, trucks (which are longer and
have a larger minimum time headway than passenger cars) have a higher pce-value
than in free flow. This reflects that at high densities they take relatively more space
than in free flow, see Figure 4.2.

4.5 Reformulation of the effective density

The previous formulation of the effective density, consisting of equations (4.8), (4.10),
(4.11) and (4.12) defined the effective density implicitly. We reformulate the effective
density in an explicit way such that it is defined uniquely and only depends on the
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ﬁu = vu(p)
quadratic equation 1 meaningful

pP= P(Ply--w)PU ; ——>  with 2 solutions ——>  solution
ni,..,Nu p:p+ orp=p P:P(Pla--wpU)

Nu = nu(Vl ) Vu)

Figure 4.5 Schematic view of the procedure in Section 4.5. We reformulate the implicit
effective density (left) into a quadratic equation with two solutions (center, Section
4.5.1) and choose the correct one (right, Section 4.5.2). The reformulated function
expresses the effective density as a function of only the class-specific densities.

class-specific densities py, ..., py. During the reformulation we show that the previous
formulation does not define the effective density uniquely, see Figure 4.5. To reformu-
late the effective density, we substitute the pce-function, the space occupancy and the
fundamental relation into the effective density. We find a quadratic equation with two
roots. We show that only one of the solutions is physically relevant. The approach is
shown schematically in Figure 4.5.

4.5.1 Two effective density branches

To do this analysis for free flow and congestion, for the most part simultaneously, we
write the effective density for both the free flow branch and the congestion branch in
the same form. The derivation is done for free flow and congestion separately. For
free flow, we substitute the free flow branch of the fundamental relation (4.8a) into the
space occupancy (4.12):

% — Veri
@ = L+ Tyvy = Ly + Tyvymax — T2 — of +bip (4.24)
Pcrit
with
f f Vu,max — Verit
a, =L, +Tywymax and b, :=-T,——— (4.25)
pcrit

Substituting (4.24) and the pce-function (4.11) into the effective density function (4.10)
gives:

+bu
p= Z P “ lgp (4.26)

Furthermore, we substitute the congestion branch of the fundamental relation (4.8b)
into the space occupancy (4.12):

C

o, =L,+T,v,=L,—Tyw+ Tupr;m = b+ % 4.27)
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with
a, =T, wpjam and by, :=L,—T,w (4.28)

Substituting (4.24) and the pce-function (4.11) into the effective density function (4.10)
gives:

b0+au/p dy +bap
a Z Z +ai/p"" L a +bip”" “2)

u u u

In the last step we multiplied both numerator and denominator with p. Finally, we
reformulate the effective density in a form that holds in both free flow and congestion:

a,+bup
= 4.30
Z (al +blp ) (330

with a, = afl and b, = bi in free flow (see (4.26)) and a,, = a, and b, = b;, in congestion
(see (4.29)). This form (4.30) clearly shows how the effective density depends on itself.

We are going to rewrite (4.30) as a quadratic equation which has two roots. Multiplying
both sides with a; + b p gives:

(a1+b1p)p =Y [(au+bup)pu] (4.31)

u

Rearranging gives:
b1p2 + (al _Zbupu> p _Zaupu =0 (4.32)
u u

If b1 = 0 the quadratic equation (4.32) reduces to a linear equation with only one root:

Y QuPuy

4.33
ap — Zu bupu ( )

p =
‘We note that, if Condition (4.16) holds, bti = 0 implies that v{ max = Verit = Vi,max for all
user classes u. Therefore, the multi-class Smulders fundamental relation (4.8) reduces
to Daganzo’s fundamental relation and both in free flow and in congestion velocities
are equal for all classes.

If b; # 0 the quadratic equation (4.32) has two roots. We find these roots, p* and p—,
by applying the quadratic formula:

p

L ay — Y, bupu + \/(al —Yu bupu)2 +4b1 Y., aupu
N —2by

P (4.34)

. oa— Yubupu— (a1 Y. bupu)2 +4b1 Y, aupu
\ p = \/ 7S (4.34b)
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Figure 4.6 The values of p* and p~ as functions of the class-specific densities of class
I and 2. For low class-specific densities, p™ and p~ are shown as distinct branches.
If class-specific densities are high, the values of p™ and p~ become complex and only
the real parts are shown. We note that for different values of the parameters of the
fundamental relation and the space occupancy, the shape of p™ and p~ may change.

The values of p™ and p~ as functions of the class-specific densities are illustrated in
Figure 4.6. This shows that the implicit set of equations (4.8), (4.10), (4.11) and (4.12)
has two solutions: p* and p~.

4.5.2 Choosing the correct effective density branch

The next step is to find out which of the two branches p™* or p~ is correct. We do this
by showing that p~ is equal to the effective density p if the parameters satisfy condi-
tions (4.16) and (4.19). We also show that, if the conditions are satisfied, p™ is unequal
to the effective density p, in most traffic states. For this analysis we rewrite the para-
meter conditions (4.16) and (4.19) in terms of conditions on a, and b,. Furthermore,
we define a new, state-dependent function.

The conditions on a, and b, are dependent on the regime (free flow or congestion).

Lemma 4.1. If the parameters satisfy (4.16) then in free flow a, and b, satisfy:

d, >0, b <b,<0, and d,+20,p >0 (4.35)

Proof. We use that all parameters are positive or nonnegative: L, > 0, T, > 0, vy max >
0, Verit > 0, Perit > 0. From this we conclude that a£ 1S nonnegative: a£ =L,+
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TuVumax > 0. If (4.16) holds, then v, max < Vi max and thus b < bf. Furthermore, if

(4.16) holds, then v, max — Verit > 0 and thus bi 1s nonpositive: b}; = —TMW <0.

Finally, we use that in free flow the effective density is not above critical (p < Pgit) to
find:

af, + 2b£P > al; + 2bipcrit =L,+ Tuvmmax - 2Tu(vu7max - Vcrit)
= L,+T, (2Vcrit - Vu,max) >0 (4.36)

The last inequality holds because L, > 0 and because 2v¢it > vy max (S€€ parameter
condition (4.16)). O

Lemma 4.2. [f the parameters satisfy (4.19) then in congestion a, and b, satisfy:

0>0, 0<0b, <Dy and a,+b,p>0 (4.37)
Proof. We use that all parameters are positive or nonnegative: L, >0, T, > 0, w > 0,
Pjam > 0. From this we conclude that aj, is nonnegative: a;, = T,Wpjam > 0. If (4.19)
holds, then L, > T,w and thus by, is nonnegative: by, = L, — T,,w > 0. Furthermore, if

(4.19) holds, then L, — T,w < L1 — Tyw and thus b;, < b{. Finally, both a;, and bj, are
nonnegative and thus: a, + b,p > 0. O]

We define the function f which depends on the current traffic state:
f:f(ph”'upU) ::al_zbupu (438)
u

Furthermore, we define the determinant in (4.34):

2
d:= (al - Zbupu) +4b1 Y aup, (4.39)
u u
Lemma 4.3. The determinant d (4.39) can be rewritten as:
2
d= (% +b p) (4.40)

Proof. We first rewrite f (4.38) using (4.30):

uru u“rtuMru 1 u“rfupMru
f o= al—Zbupu—Z“Zp +ZZP =a1—52(au+bup)pu+z%p

a+ blp ay + bup Zu ayPuy Zu ayPu
= a1 — u+ =da;—\a +b —+
Y §a1+b1p p 1t bip)
— ———
=p
_ LuPu g (4.41)

P
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We apply both forms of f (4.38), (4.41) to rewrite the determinant:
2
d = (al _Zbupu> +4blzaupu = f2+4blzaupu
u u u
Y. aup ? Y. aup g
= (— p“ “ —blp) +4b1 ) aupy = (— p” - +b1p) (4.42)
u

]

We now show that the term between brackets in the determinant d (4.39) is nonnegative
if the parameter conditions (4.16) and (4.19) are satisfied.

Lemma 4.4. If the parameters satisfy (4.16) and (4.19) then

Zu;l)upu Yhip>0 (4.43)

Proof. In congestion both a, and b are nonnegative (see Lemma 4.2) and thus (4.43)
is true. For the free flow regime we apply both forms of f (4.38), (4.41) to find:

Zuzup—" +bip = f+2bi1p =ar—Y bupu+2b1p >0 (4.44)

The inequality holds because from Lemma 4.1 we conclude that a; 4+ 2b1p is positive
and furthermore b, is nonpositive. [

Lemma 4.4 implies that if (4.16) and (4.19) are satisfied, then the effective density
takes a real value.

Theorem 4.4. If the parameters satisfy (4.16) and (4.19) then the effective density
given by p~ (4.34b) is the correct effective density.

Proof. We apply both forms of f (4.38), (4.41) and Lemma 4.3 and 4.4 to find:

ay — Y., bupu — \/(al —Yu bupu)z +4b1 Y., aupu

—2b
a _Z b _ Y AupPu +b
4T ZuDuPu P Pl f=If+2bip| _ f—(f+2bip)
B —2b; B —2b; B —2b;
= p (4.45)
We conclude that p~ gives the correct effective density p. [

Similarly, p* (4.34a) does in general not yield the correct effective density:

p+:f+|f+2b1p| :f+(f+2b1p):_<f )

b, TS b P

(4.46)
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4.6 Summary of Fastlane model and conclusions

The Fastlane model follows naturally from the principles in Chapter 3. It is based on
sound principles and is derived using assumptions from a simple car-following model.
These assumptions are used to include interactions between different classes via the
space occupancy and the passenger car equivalent value.

For later reference we summarize the Fastlane model equations. Fastlane consists of
the multi-class conservation of vehicles equation:

apu dqu
= 4.47
with class-specific flow:
qu = PuVu (448)

The class-specific velocity is defined by the fundamental relation:

Vu,max — Verit

Vymax — — P (free flow: 0 < p < pcrit) (4493)
v =vu(p) = Perit
v (p% - 1> (congestion: Perit < P < Pjam) (4.49b)

with congestion parameter:

_ PeritVerit (4.50)
Pjam — Perit

and effective density:

ay — Y, bupu — \/(al —Yu bupu)z +4b1 Y., aupu
p= —2b
Y aupPu
ag _Zu bupu

ifh; £0  (4.51a)

ifb1 =0 (4.51b)

with in free flow (if 0 < p < peri):

@y =Ly+Tyvumax  and by = — T, ~max — Verit (4.52a)
Perit
and in congestion (if Perit < P < Pjam):
ay = TywpPjam and b, =L, —T,w (4.52b)

When solving the above model equations a unique solution is selected, namely the
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solution that maximizes the effective flow:

q="Y Mudu (4.53)

Furthermore, we introduced the following conditions on the parameter values. Funda-
mental relation parameter conditions:

Verit < Vi, max < V1,max < 2Verit (4.54)

Space occupancy parameter conditions:

h
h

w< oL < zu (4.55)

]
|

We have interpreted the conditions and we have shown that they are reasonable.

In the next chapter (Chapter 5) we generalize the model and show that the generali-
zation also includes most other multi-class kinematic wave traffic flow models known
from literature. The generalized model will be reformulated in Chapter 6. Only after
this reformulation we are be able to show in Chapter 7 that Fastlane satisfies the re-
quirements introduced in Chapter 3.






Chapter 5

Generalized formulation of multi-class
models

We propose a generalized framework that contains all deterministic single-pipe multi-
class kinematic wave models known from literature. We have identified eight models
that have been developed in the last decade and are contained in this framework. In
particular, we exclude models that explicitly consider multiple lanes Daganzo (2002);
Chanut (2005) and models that include stochasticity (Ngoduy, 2010, 2011). The gen-
eralized model is largely the same as the Fastlane model. The models introduced
by Wong & Wong (2002); Benzoni-Gavage & Colombo (2003); Chanut & Buisson
(2003); Zhang et al. (2006); Ngoduy & Liu (2007); Logghe & Immers (2008); Nair
et al. (2012) all fit into the generalized model, though some of them need to be refor-
mulated first. Attempts to include all multi-class kinematic wave model in a general-
ized framework have been done before, most recently by Logghe & Immers (2008).
However, the generalized model that we propose includes more models than previous
generalized models. Moreover, our generalized model highlights the differences and
similarities between the models. Furthermore, we can more easily analyze the models
with respect to the qualitative requirements in Chapter 3. The analysis and comparison
of models with Fastlane is presented in Chapter 7.

The focus of this chapter is on reformulating all models such that they are contained
in our generalized framework. While introducing the models we also discuss the main
modeling assumptions, usually related to the differences between the classes. Finally,
we give an overview of the models to highlight their similarities and differences.

The outline of this chapter is as follows. In Section 5.1 we introduce the generalized
model. In Section 5.2-5.5 we discuss and reformulate models known from literature
to fit the generalized model. We start with the most complex models in Section 5.2 and
end with the most simple ones in Section 5.5. Finally, in Section 5.6, we summarize
and discuss the results.
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5.1 Generalized multi-class kinematic wave model

We propose a generalized deterministic single-pipe multi-class kinematic wave model.
It includes the multi-class conservation of vehicles equation and the definition of class-
specific flow. We recall those equations from Chapter 4 (4.5) and (4.6):

Py | Iqu .
P + I 0 (5.1a)
qu = PuVu (5.1b)

In the generalized model, the class-specific fundamental relation expresses the class-
specific velocity v, as a function of the effective density p:

v =vu(p) (5.1¢)

We note that this implies that the class-specific velocity only depends on the effective
density and that its parameters must be constant. Therefore, any fundamental rela-
tion parameters, such as maximum and critical velocity and critical and jam density,
must be independent of the traffic state. Finally, the effective density is expressed as a
function of all class-specific densities:

p:p<p17--->PU) (5.1d)

Equations (5.1) form a generic deterministic multi-class single-pipe kinematic wave
model. It can be generalized even further by combining (5.1¢) and (5.1d) into:

Vu:Vu(pla-'-apU) (5.2)

This generalization is not needed for any of the models known from literature. How-
ever, it may be necessary if the fundamental relation of a future model can not only be
expressed as a function of the effective density. For example, a relatively high truck
density may have a different influence on cars than it has on other large vehicles.

We now discuss all models known from literature, and show how they are contained in
the framework (5.1). In most cases this means that the model needs to be reformulated.
We first discuss the most complex models which are based on making available road
fractions to classes (Section 5.2). We continue with a short summary of the Fastlane
model (Section 5.3). We then discuss the simpler models and show that they are spe-
cific forms of Fastlane. Some models include (constant) pce-values (Section 5.4), in
others the effective density is an unweighted summation of the class-specific densities
(Section 5.5). The results are summarized in Figure 5.1 and Table 5.2. The parameter
values of the fundamental relations in Figure 5.1 are given in Table 5.1. The figure and
tables are discussed in more detail later.
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Table 5.1 Parameter values of fundamental relations in Figure 5.1.

General parameters

maximum velocity class 1 Vimax  33.3m/s = 120 km/h
maximum velocity class 2 ! V2, max 25 m/s = 90 km/h
critical velocity Verit 20.8 m/s = 75 km/h
critical density Perit 0.033 veh/m = 33 veh/km
jam density Pjam 0.2 veh/m = 200 veh/km
resulting congestion wave parameter w 4.17 m/s = 15 km/h
Logghe & Immers (2008)

maximum velocity class 2 Vomax  20.8 m/s Verit

critical density class 1 P1 crit 0.04 veh/m = 40 veh/km
critical density class 2 P2.crit 0.05 veh/m = 50 veh/km
jam density class 1 P1 jam 0.2 veh/m Pjam

jam density class 2 P2jam  0.18 veh/m = 180 veh/km
Ngoduy & Liu (2007)

pce-value class 2 iy 2

Fastlane, Chanut & Buisson (2003); Benzoni-Gavage & Colombo (2003)

gross vehicle length class 1 Ly Sm 1/Pjam

gross vehicle length class 2 Ly 18 m

Fastlane

minimum time headway class 1 T Is

minimum time headway class 2 ) 1.5s

Nair et al. (2012)

minimum bound pore size distribution by 0.01 m

maximum bound pore size distribution  bpyax 3m

critical pore size class 1 F'1 crit 25m

critical pore size class 2 12 crit 0.8 m

parameter fund. relation unrestricted " 0.8

parameter fund. relation restricted " 2

vehicle area class 1 aj 8 m?2

vehicle area class 2 a» 1.6 m?

scaling parameter d I m

! Except for (Logghe & Immers, 2008)
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V1,max V1, max
V2 max

V2 max Verit

0%
25%

0 0
0 pl,crit Pl,jam 0 Perit pjam
(a) Logghe & Immers (b) Ngoduy & Liu
V1,max V1, max
V2 max V2 max
Verit
0
0 0
0 Perit pjam
(c) Fastlane
V1, max V1,max
V2 max V2 max
Verit b \
0 == 0
0 Perit Pjam 0 Pjam
(e) Chanut & Buisson (f) Benzoni-Gavage & Colombo, Greenshields
V1, max V1,max
V2 max V2 max
t\ ‘\‘
"
25%:°s
RXN
L,
0 = 0
0 Perit 0 Perit
(g) Benzoni-Gavage & Colombo, Drake (h) Wong & Wong

Figure 5.1 Fundamental relations of two-class models. The velocities of class 1 and
2 are expressed as function of the total densities (the number of vehicles per length
unit). Each subfigure shows 4 fundamental relations. Black lines (starting at vi max)
are velocities of class 1. Blue lines (starting at vy jqx) are velocities of class 2. Solid
lines indicate the velocity if there are no vehicles of class 2, broken lines if 25% of the
vehicles is of class 2.
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5.2 Models using road fractions

Both Logghe & Immers (2008) and Ngoduy & Liu (2007) use road fractions in their
model formulation. For each class a certain fraction of the road is available. The frac-
tion depends on the traffic composition and state. Depending on the fraction the fun-
damental relation is scaled. Using this scaled fundamental relation the class-specific
velocities are determined. In the original formulation, the fundamental relation is not
defined according to our generalized definition (5.1c). Furthermore, the model does
not include an effective density (5.1d). However, both models can be reformulated,
such that they are contained in the generalized formulation.

5.2.1 Model by Logghe & Immers

Logghe & Immers (2008) propose a two-class model including three regimes. In all
these regimes the vehicles behave according to some user-equilibrium. The authors
claim that due to the equilibrium approach slow vehicles influence fast vehicles, but not
vice versa. In free flow both classes travel at their free flow velocity. It is assumed that
there, is no interaction between drivers or vehicles, or at least they do not influence each
others velocity. The main differences between classes can be seen in semi-congestion.
In semi-congestion interaction between the vehicles does take place. However, only
the vehicles of class 1 (e.g., passenger cars) react by slowing down. The velocity of
vehicles of class 2 (e.g., trucks) is not influenced: they still travel at their free flow
velocity. In congestion, vehicles of both classes are influenced by the presence of
other vehicles and all vehicles slow down further.

In the original formulation, the velocity of each class v, is determined by scaling the
class-specific fundamental relation according to the road fraction ¢, that is available
for the class. The fundamental relation is a multi-class version of Daganzo’s funda-
mental relation (see Section 2.1.2) with different parameters for each class, see Fig-
ure 5.1(a). The original formulation in density-flow form can be rewritten in density-
velocity form:

Vi, max (free flow) (5.3a)
Vu (Pl,Pz) = (pmjam ) .
wy| ———1 (congestion) (5.3b)
Pu/ O s

with parameter w,,:

Pu,critVu,max

(5.4)

wy, =
pu,jam - pu,crit

The class-specific free flow velocity, v, max, the critical density p, ¢t and the jam den-
sity Py jam are constant parameters and therefore wy, (5.4) is constant as well.

We now reformulate the rest of the model, based on the original article (Logghe & Im-
mers, 2008) and email communications with the first author. The reformulated model
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includes the road fraction o, and effective density p. It can be understood most easily
by first considering semi-congestion.

Semi-congestion In semi-congestion the road fraction available for (the slower) class
21s:

P2
P2 crit

05° = (5.5)

The remaining capacity of the road is available for class 1. Therefore, its road fraction
is:

P2 _ P2.crit — P2

a =1- (5.6)
p2,crit p2,crit
Class 2 is in free flow state and travels at its maximum velocity:
V2 = Vic = V2, max (5.7)

Class 1, however, is in the congestion state and its velocity is determined by the con-
gestion branch of its scaled fundamental relation (5.3b). We reformulate its congestion
branch as:

Vi = vy (p1,p2) = wi (_pl;am - 1) (5.8)
with effective density:
p1
L 5.9
p @ (3.9

and o = a°. Finally, we need to define when traffic is in semi-congestion. It is in
semi-congestion if:

o the fraction of road for class 1 is too small for all vehicles of class 1 to maintain
their free flow velocity (o} < p1/pi crit), and
e the velocity of class 1 is not smaller than the free flow velocity of class 2 (v{® >

V2,max)-

In all other cases traffic is either in free flow or congestion. We note that the introduc-
tion of the semi-congestion regime implies that generalization of the model to more
than two classes is not straightforward.

Free flow. If of° > p1/pi cric then there is enough road space for both classes to
maintain their free flow velocity. The class-specific velocities are specified by the free
flow branch of the fundamental relation (5.3a). Since the velocity does not depend on
the effective density, it is not necessary to define the effective density.



5 Generalized formulation of multi-class models 107

Congestion. If of° < py/pj cric and vi® < vy max then traffic is in congestion. For
both classes a certain road fraction is made available, such that their velocities are
equal. Furthermore, the sum of their road fractions is one:

of+ o5 =1 (5.10)

Substituting (5.10) into the congestion branch of the fundamental relation (5.3b) and
setting the velocities of both classes equal gives:

P1,jam ) ( P2 jam )
wi|——-1)] = m|—FF"F"—=—-1 (5.11)
<P1/a1° p2/(1— o)
The road fraction of class 1 is found by solving (5.11) for of:

. wi+ws (—pzp'j;m — 1) 512
oy = - - .
1 wy plﬁjam _|_ 2p2.]am

P1 P2

The velocity of both classes is determined by the congestion branch of the scaled fun-
damental relation (5.3b). Again, the fundamental relation can be rewritten as (5.8)
with effective density (5.9) and road fraction a;; = @ (5.12). The resulting fundamen-
tal relation for all states (free flow, semi-congestion and congestion) is shown in Figure
5.1(a). The model equations are repeated in Table 5.2 for later reference.

5.2.2 Model by Ngoduy & Liu

Ngoduy & Liu (2007) base their model on vehicle classes that are characterized by
their maximum velocities in free flow and their pce-values. In congestion all vehicles
travel at the same velocity. This model does not include semi-congestion. However,
Ngoduy & Liu include the concept of road fractions in their model.

We first introduce the original formulation by Ngoduy & Liu (2007). Later we refor-
mulate the model to be contained in the generalized model. Unlike Logghe & Immers
(2008), Ngoduy & Liu simply assume that the road fraction ¢, available for a class u
is directly related to the fraction of vehicles of that class:

_ Pu
- ptot

oY (5.13)

with p*°* =Y, p, the total density, which is in general not equal to the effective density,
which will be defined later. For each class u they define a fundamental relation which

is scaled according to the road fraction o, available for a class u and its pce-value 7,.
The fundamental relation is a multi-class version of the Smulders fundamental relation
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(Smulders, 1990):

Vu,max — Verit ~

Vi, max — — P (free flow, 0 < p < Perit) (5.14a)
vu — vu (ﬁ) — ﬁ pCrlt
w (% — 1) (congestion, Perit < P < Pjam) (5.14b)
with parameter
W= ~ﬁcritVC£it (5.15)
Pjam — Perit

In the original formulation density is p an unweighted summation of all class-specific
densities:

p=p"=) pu (5.16)

The fundamental relation is scaled according to the road fraction o, available for a
class u and its pce-value 1,. This is done by scaling the parameters critical density
Perit and jam density Pjam:

ﬁcrit = Perit Z %7 ﬁjam = Pjam Z % (5.17)
Ngoduy & Liu refer to the Highway Capacity Manual 2000 (Transportation Research
Board, 2000) to look up pce-values 7,. The pce-values given there are constant or
piecewise constant and may depend on vehicle type, vehicle length, slope of the road
and fraction of heavy vehicles.

We reformulate the model such that the fundamental relation (5.14) expresses the class-
specific velocities as a function of some effective density with constant parameters.
The resulting fundamental relation is shown in Figure 5.1(b). Substitution of the scaled
fundamental relation parameters (5.17) into the original fundamental relation (5.14)
and rewriting the result gives the reformulated fundamental relation:

Vu,max — Verit

Viu.max — BT p  (free flow, 0 < p < Peri) (5.182)
crit
Vu = VM<p) - Pjam
W (JT _ 1) (congestion, Pcrit < P < Pjam) (5.18b)
with
W ﬁcritvcrit _ PeritVerit (5.19)

ﬁjam - ﬁcrit Pjam — Perit

and effective density:

p=mnp* (5.20)
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with 7 the harmonic-weighted average of the class-specific pce-values:

Yubu P

— 521
YubPu/Mu  XuPu/Nu 621

1_7:

The model equations are repeated in Table 5.2 for later reference. Finally, we note
that the stochastic extension of this model (Ngoduy, 2011) is not contained in the
generalized formulation as it includes non-deterministic terms. Therefore, we do not
include it further in our review and analysis.

5.3 Effective density using space occupancy (Fastlane)

Fastlane (see Chapter 4) distinguishes classes based on their maximum velocity, gross
vehicle length and minimum time headway. Using these three differences between
classes and a simple car-following model, Fastlane reflects that at low densities, heavy
vehicles (e.g., trucks) have a relatively small influence and at high densities their influ-
ence is much larger. Furthermore, it is assumed that in congestion all vehicles travel at
the same velocity.

In Fastlane the fundamental relation is specified by the same fundamental relation as
the model by Ngoduy & Liu, namely the multi-class Smulders fundamental relation
(5.18). The effective density is a weighted summation of all class-specific densities:

P =Y Nupu (5.22)
u
with pce-values:
L,+T,v,
S 5.23
" Li+Tivq ( )

We note that (5.22) and (5.23) can be reformulated such that the effective density is
expressed similar toNgoduy & Liu’s model (5.20) with 1) not the harmonic-weighted
average but the arithmetic-weighted average pce-value:

Y Pu prot

Recall that (5.14), (5.22) and (5.23) form an implicit set of equations. Therefore, this
part of the model was reformulated in Section 4.5 as (4.49) and (4.51). The resulting
fundamental relation is shown in Figure 5.1(c). The model equations are repeated in
Table 5.2 for later reference. In all of the following models the effective density and
pce-value is formulated as specific form of Fastlane’s effective density (5.22) and pce-
value (5.23). However, in some cases the fundamental relation takes a different shape
(Greenshields or Drake instead of Smulders).
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5.4 Effective density with constant pce-values

Chanut & Buisson (2003), Benzoni-Gavage & Colombo (2003) and Nair et al. (2012)
propose multi-class models using effectively constant pce-values. However, Nair et al.
reject the concept of pce-values for their application of disordered (non lane based)
traffic flow. They base their model on the concept of pores. We show that the resulting
model can be reformulated in the generalized framework with constant pce-values.
Chanut & Buisson and Benzoni-Gavage & Colombo develop multi-class models based
on a simpler set of assumptions, including different velocities for different classes. All
three models in this section have fundamental relations with different shapes. Chanut
& Buisson only include two-classes, while Benzoni-Gavage & Colombo and Nair et al.
include an arbitrary number of classes.

5.4.1 Model by Nair et al.

Nair et al. developed a multi-class model to describe non lane-based traffic flow (Nair
et al., 2011a,b, 2012). Such traffic situations often occur in developing countries. The
model uses the concept of pores. Pores are the areas between vehicles and between
vehicles and the roadside. Some (large) pores are accessible for almost any vehicle
class, other (small) pores are only accessible for classes with small and highly ma-
noeuvrable vehicles. A pore is said to be accessible by class u if its size r is larger than
or equal to the critical pore size of the class r, ¢;i¢ (in meters). In the following we only
consider the most advanced model by Nair et al., which is proposed (Nair et al., 2012).

We now first introduce the original model formulation by Nair et al.. Later we refor-
mulate the model to be contained in the generalized model. The class-specific (lon-
gitudinal) velocity is defined as a weighted average of restricted velocity (v}}) and
unrestricted velocity (Vi"):

Ty crit 0

V= f(r)drvy + f(r)drvy! (5.25)

0 Ty crit

The integrals denote the fraction of pores that are inaccessible ( Or”"cm f (r)dr) or ac-
cessible ( fm f (r)dr) for class u. Consequently the sum of the fractions is one:

/0 e+ [ frdr=1 (5.26)

Ty crit

The velocity of restricted and unrestricted vehicles is determined respectively by:

Ty crit c
vl = Vimax (1— ; f(r)dr) (5.27a)

Crs

Ty, cri
and Vv = vu,m(l— / ‘ f(r)dr) (5.27b)
0
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with ¢ and ¢™ some parameters with ¢** < ¢™. Furthermore, pore spaces are assumed
to be distributed negative exponentially with mean p. Consequently, the fraction of
pores that is accessible to class u is:

/ Mmf(r)dr = ¢ Plucit (5.28)
0

Finally, the mean pore space 1/p depends on the traffic state and is defined by:

P = p(Pl; - 7kU) = (bmax - bmin) (Zauku> + bmin (5.29)

with bpip and byax bounds on the mean of the distribution. a, is a constant, denoting
the area that vehicles of class u project on the roadway in m? (or m? per vehicle). k,, is

the class-specific areal density in vehicle per m2.

We reformulate the model. Therefore, we first redefine the fundamental relation by
combining (5.25)—(5.28):

ur

Vv, = gu(l _gu)crs_cur + (1 _gu)] (1 - gu)c Vu,max (5.30)

with g the fraction of pores that is accessible to class u:

gu= e_pru,crit — / et f(r)dr (531)
0

Furthermore, we redefine the mean pore space p. Nair et al. use the class-specific
areal density k, in the conservation equation (5.1a). Since the velocity is defined only
in longitudinal direction, this implies a contradiction. Therefore, and to fit the model
into the generalized formulation we reformulate the mean pore space p (5.29) with the
following definitions:

pu = dky (5.32)
ay
and p =}, pu= ) Mupu (5.33)

with d a scaling factor. Consequently, the pce-value 1, is constant. It is not based on
the traffic state but only on the average vehicle areas a, and a;:

T (5.34)

ai
This yields the mean pore space 1/p, which is now defined by:

ai
d

It can be verified that (5.35) is equivalent to (5.29) by substitution of (5.32) and (5.33)
into (5.35). The resulting fundamental relation is shown in Figure 5.1(d). The model

p=p(p) = (Pmax — bmin) < P) + bmin (5.35)
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equations are repeated in Table 5.2 for later reference.

5.4.2 Model by Chanut & Buisson

Similar to the model by Ngoduy & Liu (2007), the original formulations of the models
by Chanut & Buisson and Benzoni-Gavage & Colombo do not include an effective
density but a total density (5.16). The fundamental relation is scaled according to the
traffic state and expresses the class-specific velocity as a function of the total density.

The model by Chanut & Buisson (2003) only includes 2 classes. These classes have
different lengths and different velocities in free flow. In the original formulation, they
define the fundamental relation very similar to Ngoduy & Liu (2007). The shape and
parameter w are defined by (5.14) and (5.15), respectively. However, they define the
scaled parameters of the fundamental relation differently:

5. . — Bp. 5. ___ P
Pert(P1:P2) = BPiam(P1:P2), Piam(P1,p2) = - o1+ Lapa (5.36)
with B € [0.2,0.5] some constant. L; = Pjam(p1,0) and Ly = Pjam (0, p2) are the gross

vehicle lengths of class 1 and 2 respectively.

We reformulate the model such that the fundamental relation (5.14) expresses the class-
specific velocities as a function of some effective density and with constant parameters.
The resulting fundamental relation is shown in Figure 5.1(e). The reformulated model
includes the fundamental relation (5.18) with parameter w as in (5.19). The other
parameters of the reformulated fundamental relation are:

pjam = ﬁjam(pho) and Perit = ﬁcrit(plao) - Bﬁjam(pbo) (537)

The effective density is defined by (5.22). The pce-value is a reduced version of
Fastlane’s pce function (5.23), with 7,, = O for all user classes u. Consequently, the
pce-values become:

Nu = Lyu/Ly (5.38)

It can be verified that the above described reformulated model is indeed equivalent to
the original model by Chanut & Buisson (2003) by substitution of the unscaled para-
meters (5.37) and the effective density (5.22) with pce-values (5.38) into the reformu-
lated fundamental relation (5.18). By doing this, one will find the original fundamental
relation (5.14) with scaled parameters (5.36) and total density (5.16). The resulting
fundamental relation is shown in Figure 5.1(c). The model equations are repeated in
Table 5.2 for later reference.



5 Generalized formulation of multi-class models 113

5.4.3 Model by Benzoni-Gavage & Colombo (2003)

Benzoni-Gavage & Colombo (2003) apply classes that differ with respect to vehicle
length and with respect to maximum velocities. The authors claim that with this ap-
proach overtaking is, at least partly, taken into account. Due to the vehicle class-
specific velocities, the first in first out (fifo) rule does not hold and one class (e.g., cars)
may travel faster than other classes (e.g., trucks).

Benzoni-Gavage & Colombo define the effective density as a weighted summation of
all class-specific densities. Therefore, reformulation of their model to be contained in
the generalized model is not necessary and the effective density is defined by (5.22).
pce-values are constant and depend on the gross vehicle length as in Chanut & Buis-
son’s model (5.38).

Furthermore, Benzoni-Gavage & Colombo define the class-specific fundamental rela-
tion (5.1c) as a scaled version of the fundamental relation of class 1:

Vu = Buvi (5.39)

Finally, they propose two different shapes of the fundamental relation of class 1, see
Figure 5.1(f) and 5.1(g). The first one is Greenshields’ fundamental relation (Green-
shields, 1935).

vi(p) = V1,max (1 _ P ) (5.40)

Pjam

We note that the fundamental relation (5.39) and (5.40) is a reduced version of Smulders’
multi-class fundamental relation (5.18) with:

\%
Perit = Pjams Vet =0 and P, = = (5.41)

V1, max

Alternatively, Benzoni-Gavage & Colombo propose to apply a multi-class version of
Drake’s fundamental relation (Drake et al., 1967):

_1< p )2
vi(p) = Vimaxe 2 \Peri (5.42)

The resulting fundamental relation is shown in Figure 5.1(c). The model equations are
repeated in Table 5.2 for later reference.

5.5 Effective density with pce-value equal to one

The last two models (Wong & Wong, 2002; Zhang et al., 2006) that we discuss include
an arbitrary number of classes. The classes only differ with respect to their velocity.
Both Wong & Wong and Zhang et al. apply an effective density that is equal to the total
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density (5.16). Again, this is a reduced version of Fastlane’s effective density (5.22)
and pce function (5.23). In this case the parameter values are L, = L; and 7;, = 0 for all
classes u. Essentially, the effective density is equal to the effective density in Fastlane
(5.22) but with pce-values one (1, = 1). This implies that the velocities do not depend
on the composition but only on the total number of vehicles. Zhang et al. analyze the
model without specifying the shape of the fundamental relation. They only assume
that the velocity of any class u is a factor times the velocity of class 1:

py = lmax, (5.43)
V1,max
Both Zhang et al. and Wong & Wong scale the fundamental relation of class 1 to define
the velocities of the other classes, such as Benzoni-Gavage & Colombo (5.39). Wong
& Wong apply Drake’s fundamental relation (5.42), see Figure 5.1(h). The model
equations are repeated in Table 5.2 for later reference.

5.6 Conclusions

We have developed a generalized traffic flow model (5.1) that contains all deterministic
single-pipe multi-class kinematic wave models known from literature. The models are
based on different principles, such as making available fractions of road to classes,
pce-values (constant or based on dynamic space occupancy) and analogy to porous
flow. The principles and assumptions of the models are highlighted in Table 5.2. The
table furthermore shows how this leads to different fundamental relations and effective
density functions.

We have shown that all models may be cast in the same generalized model containing
the following elements:

1. conservation of vehicles equation (5.1a)
2. definition of class-specific flow (5.1b)

3. class-specific fundamental relation (5.1c)
4. effective density function (5.1d)

The first two elements are equal for all models. Models can be distinguished based
on the shape of the fundamental relation and the effective density function. The fun-
damental relation usually takes a traditional shape. However, the effective density
function varies largely over the model. Finally, the models differ with respect to the
number of classes. Most models do not put any restrictions on the number of classes.
The model by Chanut & Buisson (2003) only includes 2 classes, but can be generalized
relatively straightforward to include more classes. However, the model by Logghe &
Immers (2008) also includes only 2 classes, but its generalization to more classes is
not straightforward.

With the generalized model in hand, we can now more easily assess the models qual-
itatively. Most requirements from Chapter 3 can be assessed directly. However, some
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requirements (such as the ones related to characteristic velocity) need another refor-
mulation of the generalized model first. Therefore, in the next chapter (Chapter 6) we
reformulate the generalized model in the Lagrangian coordinate system. In Chapter 7
we assess the generalized model and all specific models with respect to the qualitative
requirements in Chapter 3.
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Table 5.2 Classification of multi-class models, according to the principles and assumptions on which they are based, maximum number of

classes and according to the model equations (i.e. fundamental relation, effective density and pce function or value). (Regimes: ff: free flow, sc:
semi-congestion, cn: congestion.)

Principle / nr. of  Model Class specific velocity v, (p) Effective density p(p1,...,pv)
assumption classes
user 2 Logghe & Immers (2008) ~ Daganzo: undefined ff (o® > Pﬂ_%v
equilibrium, ) Vumax ff, scu=2 b‘m_f s =1— -2 sc (o< m_ﬂ%v
3 regimes Vu = Wi AP%s _ Hv scu=1,cn p=4q% ! . nmwmma Q and (vi>v; max)
p1 c _ WiTWa\ T, T
o Oy " Em._m_z s SMME cn (v < <P5mxv
road fractions U Ngoduy & Liu (2007) Smulders: P =Y, Pu 7= . W;N_ v
Vu,max —Verit u\Fu/ lu
Vu,max — %b ff
Space Fastlane Vy = Piam (a1—X, w:bsv\/\ma_\M_: wiu:thfhw_ Y AuPu if b
§A_ |Hv cn _ b 1 _me
occupancy P P=9Y r.an _ .
41—, bupa _m.w_ =0
a, =L,+ ﬂ:«\:qamxu @: = |ﬂ:% ff
ay = N..:S\P.mau b,=L,—T,w cn
P =Y., MuPu @, =Ly + T,y
flow through Nair etal. (2012) = oll=g)" "+ (1—g)]x  m=%=befm R=O0Li=a
pores, vehicle Q - %xvm Vu,max = Oy = Q:h”vﬂd: = %
area 8u = mlﬁs&f Y= Awgmx - @BEVN\_D =+ bmin = p = M,.: %bx
vehicle length 2 Chanut & Buisson (2003)  Smulders T, = .
: =0, =L, =N =1
U Benzoni-Gavage & Greenshields: Vi = Vimax A_ - n.b v =p=Y, Lp,
Colombo (2003) . . _ M "L
i.e. Smulders with peric = Pjam, Verie = 0
Drak 105
rake: v, = Vv, maxe crit
unequal Wong & Wong (2002) ! max T,=0,L,=1L,
velocities Vaemax =0, =L =n,=1

Zhang et al. (2006)

vy = v1, shape undefined

V1,max

HVb”M.:D:




Chapter 6

Lagrangian formulation

In Chapter 2 and 5 the mixed-class kinematic wave model and the generalized multi-
class kinematic wave model were introduced, respectively. Traditionally, the models
are formulated in the Eulerian coordinate system, which is fixed in space. Alterna-
tively, they can be formulated in the Lagrangian coordinate system, which moves with
the vehicles. In this chapter we discuss the state-of-the-art in the Lagrangian formu-
lation of traffic flow models, we extend it to multi-class models and we discuss its
advantages.

The outline of this chapter is as follows. In Section 6.1 we summarize the derivation
of the Lagrangian formulation of the kinematic wave model as it was proposed by
Leclercq et al. (2007). In Section 6.2 we propose a graphical, more intuitive derivation.
In Section 6.3 we derive the Lagrangian formulation of the multi-class kinematic wave
model. Again, this is followed by a graphical, more intuitive derivation in Section
6.4. Section 6.5 concludes this chapter with a discussion of the advantages of the
Lagrangian formulation.

6.1 Lagrangian formulation of the kinematic wave mo-
del

We recall the Eulerian formulation of the kinematic wave model (2.23):

dp 0
5 +5-(alp) =0 (6.1a)

g=q(p) (6.1b)

Location x and time ¢ are the coordinates and the model describes how the variables
(density p and flow g) change over location and time. The coordinate system is shown
in Figure 6.1(a).

Leclercq et al. (2007) propose an alternative formulation using the cumulative count
function (Newell, 1993a). Daganzo (2005a); Leclercq et al. (2007); Laval & Leclercq
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Figure 6.1 Eulerian and Lagrangian coordinate system.

(2013) show the close relation between the kinematic wave model, Hamilton-Jacobi
partial differential equations and variational theory applied to traffic flow. The cumu-
lative count function (Newell, 1993a) deals with the number of vehicles n(x,z) that
have passed location x until time z. The vehicles are numbered in the order they pass a
certain location, thus n(x,) is the number of vehicles that have passed location x until
time t. The cumulative count function and variational theory can be applied directly
to solve the kinematic wave model, which will be discussed in more detail in Chapter
8. However, Leclercq et al. (2007) exploit the cumulative count function further and
propose to transform the (Eulerian) coordinate system into a Lagrangian coordinate
system, see Figure 6.1(b). Now the coordinate system moves with the vehicles. The
same coordinate transformation is applied before to higher-order models (Greenberg,
2001; Aw et al., 2002). Recently, another alternative coordinate system has been intro-
duced. Leclercq & Bécarie (2012); Laval & Leclercq (2013) propose a formulation of
the kinematic wave model that calculates the time ¢ at which vehicle n reaches location
X.

The coordinate transformation from Eulerian to Lagrangian (z,n) formulation implies
replacing spatial coordinate x by vehicle number n. Consequently, for a fixed vehicle
number n, its location x changes over time . Moreover, since we are dealing with a
macroscopic (continuum) model, n is not integer but can take any (real) value. Time ¢
remains a coordinate and the model now describes the change of the traffic state over
vehicle number and time. Furthermore, instead of using density as a variable it is more
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Table 6.1 Comparison between Eulerian and Lagrangian formulation of the kinematic
wave model.

Euler Lagrange
coordinates (x,1) (n,t)
main variable p=-0dn/dx s=—0dx/dn
fundamental relation q(p) V()
d d Ds ov*
conservation equation 8_It) + 8_;] =0 ﬁj + 8_‘:1 =0
convenient to replace it with spacing:
1
§=— (6.2)
p

The other variable is velocity v*.! The main differences between the two formulations
of the kinematic wave model are highlighted in Table 6.1.

The kinematic wave model in Lagrangian formulation consists of a conservation equa-
tion and a fundamental relation. The fundamental relation expresses the vehicle velo-
city v* as a function of the spacing s:

v=1v"(s) (6.3)

Figure 2.2(d) shows such a Lagrangian fundamental relation. As an example we
reformulate the mixed-class Smulders fundamental relation (4.7):

Vmax — Verit

Vmax — ————P (free flow) (6.4a)
Perit

v=v(p) = .
w (pjp% — 1) (congestion) (6.4b)

(6.4) is reformulated in its Lagrangian equivalent by applying the definition of spacing
(6.2):

\% — Veri
Vimax — %C“‘scm (free flow) (6.5a)

v=v"(s) =
w( S 1) (congestion) (6.5b)

Sjam
with critical spacing Scrit = 1/pcric and jam spacing Sjam = 1/Pjam-

Leclercq et al. (2007) derive the Lagrangian conservation equation from its Eulerian

"'We use v* to make a distinction between the velocity v = v(p) as a function of the density in the
Eulerian formulation and v* = v*(s) as a function of the spacing in the Lagrangian formulation. For
readability, whenever the distinction is clear from the context, we omit the *.
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formulation (6.1). In Section 6.2 we propose an alternative, graphical derivation. How-
ever, we first discuss the mathematically more rigorous derivation by Leclercq et al.
(2007). They use the definition of spacing (6.2) and express spacing as the partial
derivative of the position x to vehicle number n:

ox

5, (6.6)

s =
The minus sign results from the fact that vehicles are numbered opposite to the driving
direction, see Figure 6.1(b).

Furthermore, the Lagrangian time derivative is applied:

D 4 d

E = E + Va (6.7)

D/Dt is the partial derivative with respect to time in Lagrangian coordinates, that is:
the derivative with respect to time ¢ with the other coordinate (vehicle number ) fixed.
As n-coordinates move with vehicle velocity, Dr/Dr is the rate of change of some
variable r as it is observed by a driver moving with velocity v(n,t) = v(x(n),t) =
dx/dt. This implies that D/Dr is a directional derivative in Eulerian coordinates: it
is the derivative in the direction of the moving observer (the driver). Both coordinates
t and x change in this direction. Conversely, d/dt is a partial derivative in Eulerian
coordinates and a directional derivative in Lagrangian coordinates.

The conservation equation in the Lagrangian coordinates can now be derived by sub-
stituting the definition of spacing (6.2) into the Eulerian conservation equation (6.1a),
applying the quotient rule and rewriting the result:

0 0 ds dv  Jds

Subsequently substituting the Lagrangian time derivative (6.7) yields:

Ds Jdv

) 6.9

Dr ' ox (6)
Finally, the definition of spacing (6.6) is substituted to find the Lagrangian conservation

equation:

Ds 8\/_

Dr + o (6.10)

To avoid further confusion, in the following we write the Lagrangian time derivative
(6.7) as d/dt, unless it is necessary to use D/Dr to distinguish between the Eulerian
and the Lagrangian time derivative.

The conservation equation in Lagrangian formulation (6.10) can be understood qual-
itatively by considering two vehicles: a leader and a follower. If the follower has a
higher velocity than the leader, the distance between the two vehicles decreases, i.e. if
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Figure 6.2 Graphical derivation of Eulerian and Lagrangian conservation equation
using vehicle trajectories and control volumes.

dv/dn > 0 then Ds/Dr < 0. The reverse is also true: if the follower is slower than the
leader the distance will increase.

6.2 Graphical derivation

The above derivation of the Lagrangian conservation equation (6.10) might be difficult
to understand intuitively and has the disadvantage that it relies on the Eulerian formu-
lation. We propose an alternative derivation that does not rely on the Eulerian formu-
lation. Instead, it is similar to the (graphical) derivation of the Eulerian conservation
equation. Furthermore, it uses similar concepts as Greens theorem and the divergence
theorem (Stewart (1999) or any other textbook on partial differential equations). In
the following, we first discuss the graphical derivation of the Eulerian conservation
equation before turning to our graphical derivation of the Lagrangian conservation
equation.

6.2.1 Graphical derivation of the Eulerian formulation

The Eulerian conservation equation can be derived using vehicle trajectories in a con-
trol volume as illustrated in Figure 6.2(a). The number of vehicles entering the control
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volume (inflow) equals the number of vehicles leaving it (outflow). This can be written
as:

X2 5] X2 L]
/p(tl,x)dx—i— /q(t,xl)dt :/ p(rx)de + | qtx)dt (6.11)
X1 4] X1 3!

inflow from left inflow from below outflow to right outflow to above

We decrease the control volume to an infinitesimal volume: x, = x; + Ax — x; and
t) = t1 + At — t1. Because the volume is small, we may assume density p and flow
q are constant. Consequently, [;*p(#,x)dx — p(z,x)Ax and fflzq(t,x)dt — q(t,x)At.
Furthermore, rewriting (6.11) yields:

p(t +At,x) —p(t,x) n q(t,x1+Ax) —q(t,x1)

=0 6.12
At Ax (6.12)
We now recall the definition of the partial derivatives of f = f(y,z):
J . fO+Av)—fnz) 0 [zt A7) — f(3,2)
— =1 - =1
ayf (z) = | im Ay 3 (5,2) Aim Ar
(6.13)

We apply this definition (6.13) to the infinitesimal control volume and find the Eulerian
conservation equation (6.1a).

6.2.2 Graphical derivation of the Lagrangian formulation

The Lagrangian conservation equation can be derived using a similar procedure. In
this case, the control volume is not rectangular as in Figure 6.2(a) but it is a platoon of
An vehicles that is followed over a time At, as in Figure 6.2(b). (However, the platoon
is rectangular in the (¢,n)-plane.) The road length taken by this platoon changes over
time as it travels forward. On one hand, the original length at time #; is increased by
the distance traveled by the first vehicle n;. On the other hand, it is decreased by the
distance traveled by the last vehicle ny = n; + An. (Note again the order of vehicles:
vehicle n; is behind vehicle »;.) This can be written as:

1 1 31 n

J/

1o ny 1) 1)
/ s(tz,n)dn:/ s(ty,n)dn  + v(t,n))dt — / v(t,np)dr.  (6.14)
n n

ﬁnal]:angth initiaﬁength distance first veh distance last veh

Again, by decreasing the control volume to an infinitesimal volume we may assume
spacing s and velocity v are constant within this volume. Consequently, f,fl 2s(t,n)dn —
s(t,n)An and j;’lz v(t,n)dt — v(t,n)At. Furthermore, rewriting (6.14) yields:

s(ty,n) —s(t1,n) N v(t,np) —v(t,ny)

=0. 1
At An 0 (6.15)
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We take an infinitesimal volume, that is: we let An — 0 and Ar — 0 in (6.15). Fur-
thermore, we use the definition of the partial derivative (6.13) to find the Lagrangian
conservation equation (6.10).

The Lagrangian conservation equation that we derive in this graphical way, is exactly
the same partial differential equation as was derived using the mathematically more
rigorous approach in Section 6.1. However, we believe that the graphical derivation is
easier to understand and interpret intuitively.

6.3 Multi-class kinematic wave model

We derive the Lagrangian formulation of the generic multi-class kinematic wave model
(5.1) from its Eulerian formulation. The derivation in this section is mathematically
rigorous and relies on the Eulerian formulation. In the next section (Section 6.4) we
propose a graphical, more intuitive, derivation of the multi-class conservation equation.
Let us first recall the Eulerian formulation of the model (5.1):

9pu | 9qu _
5 T o =0 (6.16a)
Gu = PuVu = Puvu(pP) (6.16b)
p=p(p1,---,Pv) (6.16¢)

6.3.1 Reformulation of fundamental relation and effective density

The derivation of the Lagrangian formulation starts with the multi-class Lagrangian
fundamental relation:

v =v,(s) (6.17)

As an example, the multi-class Smulders fundamental relation (4.49) can be reformu-
lated as:

Vu,max — Verit

Vi, max — fsmt (free flow) (6.18a)
Vu =V (S) =
w ( > 1> (congestion) (6.18b)
Sjam

In the fundamental relation we apply the Lagrangian equivalent of the effective density,
namely the effective spacing:

§=— (6.19)
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The effective spacing can be interpreted as the ‘average’ spacing of all vehicles. Ana-
logously, the class-specific spacing is defined:

1

= — 6.20
o (6.20)

Su
The class-specific spacing s, can be interpreted as the distance between the fronts of
two vehicles of class u. This implies that there may be vehicles of other classes in
between.

We show how an effective density function can be reformulated into its Lagrangian
equivalent. As an example, we take a weighted average of the class-specific densities
with constant pce-values 1, (4.10):

P =Y Mupu (6.21)

The effective spacing in Lagrangian formulation is derived by applying the definition
of class-specific and effective spacing (6.19):

1
- Zu nu/su

s (6.22)

6.3.2 Reformulation of multi-class conservation equation

Before we reformulate the multi-class conservation equation into Lagrangian coor-
dinates we need some definitions and preliminaries. We define class 1 as the refer-
ence class for the coordinate system. This implies that only vehicles of class 1 are
numbered. Therefore, coordinate n refers to the number of vehicles of class 1 that
have passed location x until time 7. Furthermore, the coordinate system moves with the
vehicles of class 1, i.e. with velocity v;. Therefore, the Lagrangian time derivative in
the multi-class model is defined by:
D J 0

Finally, the class-specific spacing of class 1 can be expressed as the partial derivative:

ox

- (6.24)

S1 =

To find the Lagrangian multi-class conservation equation for the other classes, (6.20) is
substituted into the Eulerian conservation equation (6.16a), the quotient rule is applied
and the result is rewritten:

d (1 d (vu\ sy v, ds,
E(;)+$<;)_o = s S =0 (6.25)
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Subsequently, substituting the multi-class Lagrangian time derivative (6.23) yields:

Ds,, v, dsy
E—SMW—F(VM—VI) o =0 (6.26)

Finally, (6.24) is substituted to find the Lagrangian multi-class conservation equation:

Ds, s,0vy  vi—v,0dsy
— =0 6.27
Dt  s; dn s1  on 6.27)

We note that for class 1 the conservation equation (6.27) reduces to an equation very
similar to the Lagrangian mixed-class conservation equation (6.10):

DS1 &vl
—+—=—=0 6.28
Dt * on (6.28)
Yet an alternative formulation of the conservation equation in Lagrangian coordinates
is proposed in (Yuan et al., 2011; Yuan, 2013):

Ds, Jdv,
=0 6.29
Dt + oany, ( )
with Lagrangian time derivative:
D J d

— == -— 6.30
D o M ox, (6.30)
The main difference is that in this model a different coordinate system is introduced for
each class. The coordinate systems are coupled via the fundamental relation and the
effective density function. Yuan et al. (2011); Yuan (2013) argue that this formulation
may lead to more efficient simulations if there are only few vehicles in the reference
class.

Finally, the flow to be maximized needs to be defined. In Fastlane this is the effective
flow:

qunuqFZnuz—” 6.31)

6.4 Graphical derivation

The above derivation of the Lagrangian multi-class conservation equation (6.27) is
mathematically rigorous and similar to the original derivation of the Lagrangian mixed-
class conservation equation (see Section 6.1). However, the derivation is not very
intuitive and relies on its Eulerian formulation. Therefore, we propose a graphical,
more intuitive derivation of (6.27).

The graphical derivation of the Lagrangian multi-class conservation equation is a com-
bination of the graphical derivation of both the Eulerian and Lagrangian mixed-class
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Figure 6.3 Vehicle trajectories and control volume for the graphical derivation of the
Lagrangian multi-class conservation equation. The solid lines represent trajectories
of vehicles of class 1, the broken lines represent trajectories of vehicles of class u. The
number of vehicles of class u that flows into the control volume equals the outflow of
class u.
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conservation equations. The control volume consists of a platoon of An vehicles of
class 1. The platoon is followed for a certain time At, see Figure 6.3. The conservation
equation for class 1 (6.28) is derived similarly to the Lagrangian mixed-class conser-
vation equation (see Section 6.2). The only difference is that spacing s is replaced by
spacing of class 1 s; and velocity v is replace by velocity of class 1 v;. For the conser-
vation equations of all other classes, the platoon of vehicles of class 1 acts as a control
volume. Similar to the graphical derivation of the Eulerian mixed-class conservation
equation, vehicles of class u enter and leave the platoon.

Let us first assume that the vehicles of class u are not faster than those of class 1.
Later, we relax this assumption. Vehicles of class u enter the control volume from the
left and from above. Furthermore, vehicles of class u leave the control volume at the
right and below. We assume that over each of those inflow and outflow boundaries
of the control volume, the traffic state is constant. This assumption is reasonable if
the control volume is small. Later, we will take an infinitesimal control volume and
thus the assumption is justified. Each of the inflows in and outflows out of the control
volume is discussed separately:

Inflow left Vehicles that enter the control volume from the left are originally (at #;)
in the platoon. The length of the platoon is the spacing of class 1 s; times the
number of vehicles of class 1 in the platoon: s;(¢;)An. The number of vehicles of
class u that flows into the control volume at time #; is the platoon length divided
by their spacing: s1(t1)An/s,(t1).

Inflow above Vehicles that enter the control volume from above are overtaken by the
first vehicle of class 1 in the platoon between t; and #,. Those vehicles also
pass the line at #; with length (vi(n;) — v,(n1))At. Since s, is the spacing of
class u, the number of vehicles that flows into the control volume from above is
(vi(n1) —vu(n1))At/su(ny).

Outflow right Vehicles that leave the control volume at the right are in the platoon at
t>. Similar to the inflow from the left, the number of vehicles that flows out of
the control volume at time 1, is s1(t2)An/s, ().

Outflow below Vehicles that leave the control volume below are overtaken by the last
vehicle of class 1 in the platoon between #; and #;. Similar to the inflow from
above, the number of vehicles that flows out of the control volume below is

(vi(na) —vu(na))At /s, (n7).

The inflow into the control volume equals the outflow and thus:

s1(f1) vilm) —va(m) o sile2) o vi(m2) —vu(m2))
mAn+ su(ny) Ai_ su(tz)A +\ su(n2) Ai (632
— ——

inflow left inflow above outflow right outflow below
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Dividing both sides by AfAn and rearranging gives:

sit)  s1(2)  vi(m) —vu(m)  vi(ng) —vu(m2)

B su(n) - su(n2) _
A A =0 (6.33)

Until now we assumed that the vehicles of class u are not faster than those of class 1.
If, however, they are faster, the vehicles enter the platoon from the left and from below
and leave it from the right and above. Applying the same procedure, the same result
(6.33) is found. Finally, applying the definition of the derivative (6.13) to (6.33) gives
the Lagrangian conservation equation.:

D /s d (vi—vu\
SEAC) e

We note that this Lagrangian conservation equation (6.34) takes a different form than
the one we derived before (6.27). However, (6.34) can be rewritten as (6.27). There-
fore, we first apply the quotient rule to (6.34) and find:

Ds N vy Ds,, vy
s s — -5
“Dr “on "Dr “on

—(vi—vy)=— =0 (6.35)

By substituting the conservation equation for class 1 (6.28) we find that the first two
terms drop out. Furthermore, dividing by —s; gives the conservation equation (6.27).

6.5 Discussion

We have introduced the Lagrangian formulation of both the mixed-class and the multi-
class kinematic wave model. For both models the Lagrangian formulation was derived
from the Eulerian formulation and graphically. Though the derivation from the Eu-
lerian formulation is mathematically more rigorous, the graphical derivation is more
intuitive and easier to understand.

The Lagrangian formulation of both models is valuable because this formulation yields
considerable benefits over the Eulerian formulation, which are illustrated in the re-
mainder of this dissertation. The advantages are related to:

efficiency of simulation (for traffic state prediction)
efficiency of traffic state estimation and traffic control
model analysis

coupling with microscopic models

adaptations and extensions of the model

A e

The first three advantages have to do with the nonlinearity of the model. In the Eu-
lerian formulation, the flow as a function of the density plays an important role. At low
densities, the flow is an increasing function of the density, whereas, at high densities it
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is a decreasing function. However, the role of the flow in the Eulerian formulation is
taken over by the velocity in the Lagrangian formulation. The velocity is a nonincreas-
ing function of the spacing. Therefore, the Lagrangian formulation is ‘less nonlinear’.
This advantage is used in applications such as traffic state estimation using Kalman
filtering (Yuan et al., 2012). The same advantage of the Lagrangian formulation is
exploited in efficient simulation methods (see Chapter 8 and 9) and in mathematical
analysis of the multi-class model (see Chapter 7). The other two advantages are dis-
cussed below.

Leclercq (2007a) shows how the Lagrangian formulation simplifies the coupling be-
tween microscopic and macroscopic models. Microscopic and macroscopic models
can be used in one simulation for example to have detailed results at locations or times
when this is desired, while still benefitting from the low computational costs for the
macroscopic model at other locations and times. Since both microscopic models and
macroscopic models in Lagrangian formulation have vehicle number n and time ¢ as
coordinates, their coupling is simpler than when the Eulerian formulation of the mac-
roscopic model was applied.

Certain extensions and adaptations of the kinematic wave model can be introduced
in the Lagrangian formulation with less effort than in the Eulerian formulation. For
example, the bounded acceleration model by Lebacque (2002) (see also Section 2.4.1)
bounds the acceleration of vehicles by dv/dt +vdv/dx < amax With amax the maximum
acceleration. The term vdv/dx is needed to bound the acceleration of vehicles instead
of bounding the rate of change in velocity at a location fixed in space. However, in
the Lagrangian formulation the acceleration of vehicles is bounded by simply setting:
Dv/Dt < amax (Leclercq, 2009). Similarly, moving bottlenecks can be introduced in
the kinematic wave model by applying the Lagrangian formulation (Leclercq et al.,
2004).

In the next three chapters the Lagrangian formulation of the kinematic wave model
plays an important role. In Chapter 7 it will be applied to analyze the generalized
multi-class kinematic wave model. It turns out that especially for the analysis of the
anisotropy requirement (Requirement 9, Chapter 3) the Lagrangian formulation of the
model is very useful. In Chapter 8 and 9 numerical methods to solve the continuous
model equations are introduced. It turns out that methods based on the Lagrangian for-
mulation are more efficient, both in terms of accuracy and computing time. Finally, in
Chapter 10 the Lagrangian formulation of the kinematic wave model for homogeneous
roads will be extended to include inhomogeneities such as on and off ramps.






Chapter 7

Model analysis

In Chapter 3 we introduced the requirements for multi-class traffic flow models. All
requirements are important qualitative properties of multi-class kinematic wave traffic
flow models. Therefore, a multi-class kinematic wave model should satisfy the re-
quirements. The requirements are related to the model formulation, the fundamental
relation and the model dynamics. In Chapter 4 we introduced Fastlane and in Chapter
5 we summarized all multi-class kinematic wave models known from literature. In this
chapter we assess whether the models satisfy the requirements. For part of this assess-
ment, we apply the generalized formulation from Chapter 5 and its reformulation in
Lagrangian coordinates introduced in Chapter 6.

We recall the requirements from Section 3.2:

Model formulation requirements:
1. Given ‘permissible’ class-specific densities, (class-specific) velocities and flows
are defined uniquely.
2. The model has a unique solution that maximizes flow.
Fundamental relation requirements:
3. In free flow the velocities of each class are allowed to differ.
4. In free flow the velocities of relatively fast classes are allowed decrease with
increasing density.
5. In congestion the velocity of each class is equal.
6. If the density reaches a certain threshold (which may depend on the traffic com-
position), vehicle velocity is zero.
7. If the density of only one class increases, while all other class-specific densities
remain constant, vehicle velocities do not increase.
Model dynamics requirements:
8. Characteristics have finite velocity.
9. Characteristics do not have a larger velocity than vehicles.

We assess all multi-class models from Chapter 5 with respect to these requirements.
The results are presented in Table 7.1 and discussed in more detail hereafter.
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The outline of this chapter is as follows. We first discuss shortly the model formula-
tion Requirements 1 and 2. With the results from Chapter 5 the models are relatively
straightforward to assess with respect to the first four fundamental relation require-
ments (3—6). Therefore, in Section 7.1 we first do this part of the assessment. To assess
the models with respect to the other requirements more effort is needed. Moreover,
these requirements (7-9) turn out to be closely related. They are discussed in more
detail in Section 7.2. In Section 7.3 we assess the generalized model with respect to
Requirement 7-9. We do this using the model formulation in Lagrangian coordinates
introduced in Chapter 6. This analysis results in a set of conditions on the fundamental
relation and the effective density function. The conditions are applied in Section 7.4
to assess all models one by one with respect to Requirements 7-9. Finally, in Section
7.5 we summarize the results and discuss how the framework developed in this chapter
may be applied to other (future) models.

7.1 Review of Requirements 1-6

We assess the multi-class models with respect to Requirements 1-6. We do not re-
peat the model equations here but refer to Table 5.2 for an overview of all multi-class
models and Figure 5.1 for examples of their fundamental relations. Furthermore, we
assume that parameters have ‘feasible’ values. Some parameters are positive: class-
specific maximum velocity vy max > 0, (class-specific) jam density pjam > 0, Py jam > 0,
and parameters w = pcrithrit/(pjam - pcrit) >0,w, = pu,critvu,crit/(pu,jam - pu,crit) >0,
class-specific vehicle length L, > 0, constant pce-values 1, > 0. Some parameters
are nonnegative: (class-specific) critical velocity v, crit > 0, verie > 0, (class-specific)
critical density Py crit > 0, Peric = 0, class-specific critical pore size ry ¢ > 0, (class-
specific) minimum time headway 7;, > 0. Finally, maximum velocities are not smaller
than critical velocities (Vmax > Verits Vu,max = Vu,crit> Vu,max = Verit) and jam densities are

not smaller than critical densities (Pjam = Perits Pujam = Pucrit)-

7.1.1 Model formulation requirements

Requirement 1 states that velocities and flows must be defined uniquely when class-
specific densities are given. The generalized multi-class model satisfies this require-
ment. Since all other models are contained in the generalized model, they also satisfy
the requirement.

Requirement 2 states that there is a unique solution to the model equations that maxi-
mizes the flow. In multi-class models it is necessary to define which type of flow (total
flow (in vehicles/s), effective flow (in pce/s), or even another type of flow) must be
maximized. Both Zhang et al. (2006); Chanut & Buisson (2003) include the entropy
condition in a discussion on solving a Riemann problem, without explicitly mention-
ing which type of flow is maximized. Logghe & Immers (2008) include the entropy
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condition by stating that in their model vehicles maximize their velocity. In Fastlane
we include that the effective flow ¢ = ), 11,9, must be maximized. Benzoni-Gavage
& Colombo (2003) discuss the entropy condition in even much more detail. Other
authors (Wong & Wong, 2002; Ngoduy & Liu, 2007; Nair et al., 2012) discuss flow
maximization only in the context of numerical methods.

7.1.2 Fundamental relation Requirements 3—-6

We refer to Figure 5.1 and Table 5.2 for the fundamental relations of all models. Re-
quirement 3 states that the model must allow for unequal velocities in free flow. All
models except the ones by Wong & Wong; Zhang et al. satisfy this requirement.

Requirement 4 states that the class-specific velocities must be allowed to be decreasing
in free flow. The model by Logghe & Immers does not satisty this requirement because
velocities in free flow are constant. All other models do satisfy this requirement.

Requirement 5 states that in congestion velocities of all classes must be equal. The mo-
dels with the Smulders fundamental relation (i.e. the models Ngoduy & Liu, Fastlane,
and the model by Chanut & Buisson) satisty this requirement. In the models by Nair
et al.; Benzoni-Gavage & Colombo; Wong & Wong; Zhang et al. the class-specific
velocities are unequal in all regimes. If both classes in the model by Logghe & Immers
are in congestion, the class-specific velocities are equal. However, if only class 1 is in
congestion (i.e. traffic is in semi-congestion) then the velocities are unequal.

Requirement 6 states that there must be a (jam) density for which the velocities are
zero. It depends on the fundamental relations v,(p) whether a model satisfies this
requirement. The Daganzo, Smulders and Greenshields fundamental relations satisfy
the requirement. Therefore, the models by Logghe & Immers (2008); Ngoduy & Liu
(2007); Chanut & Buisson (2003) and Fastlane satisfy the requirement. The model
by Benzoni-Gavage & Colombo (2003) with Greenshields fundamental relation also
satisfies it. However, the fundamental relation applied by Nair et al. (2012) and the
Drake fundamental relation applied by Benzoni-Gavage & Colombo (2003); Wong &
Wong (2002) do not reach zero velocities at high densities and thus do not satisfy the
requirement. Zhang et al. (2006) do not specify a fundamental relation and the model
can therefore not be assessed with respect to this requirement.

7.1.3 Velocities in the models by Logghe & Immers and Nair et al.

Finally, we make some observations of the velocities in the models by Logghe & Im-
mers and Nair et al.

In the model by Logghe & Immers in some traffic states in semi-congestion the velocity
of class 1 is higher if there are more vehicles of class 2, even if the total density (in
number of vehicles per meter) remains the same. This can be observed in Figure 5.1(a)
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because the velocity of class 1 with 25% vehicles of class 2 (broken line) is above the
velocity of class 1 with 25% vehicles of class 2 (solid line) at total densities just above
the critical density of class 1 (pq ¢rit). As an example we show more rigorously that
this is the case with the parameters as in Table 5.1, i.e.: for class 1 maximum velocity
Vi,max = 33.3 m/s, critical density py i = 0.04 veh/m, jam density py jam = 0.2 veh/m
and for class 2 maximum velocity va max = 20.8 m/s and critical density p; cr = 0.05
veh/m. We consider two slightly different traffic states, both semi-congestion. We
analyze the velocities using the equations as presented in Table 5.2.

In the first case, the class-specific density of class 1 to be p; = 0.03 veh/m and one
third of the total number of vehicles of class 2: p, = 0.015 veh/m. Therefore, the road
fraction that is available to class 1 is: chc — P2ei=P2 _ () 7. This leads to the effective

P2 crit
density p = g—flc = 0.043 veh/m. We find the velocity of class 1:
Vi =wy (I)Lﬂ . 1) _ P1,critV1,max (pLjam _ 1) —30.4 m/s 7.1)
P pLjam — P1 crit P
We note that this is indeed semi-congestion because plp C‘m = 0.075 > o and vy >

V2, max-

In the second case we consider a different traffic state with the same total density, but
with no vehicles of class 2. We show that this leads to a lower velocity for class 1. The
total density in the above example was 0.03 4 0.015 = 0.045 veh/m. In this case, we
take p; = 0.045 veh/m and p, = 0. Consequently, &} = 1 and p = p; = 0.045 veh/m.
We find the velocity of class 1:

Vi =w (pl,ﬂ . 1) _ P1,critV1,max (pl,jam _ 1) — 287 m/s (7.2)
p pl,jam — P1,crit P

We conclude that in the second case, with the same total density, but with less vehicles
of class 2 the velocity of class 1 is lower (v; = 28.7 m/s) than in the first case (vi = 30.4
m/s). This is counterintuitive as it implies that if the percentage of trucks (class 2) is
higher, the cars (class 1) travel faster.

In the model by Nair et al. something similar happens. As Figure 5.1(d) shows, if
the percentage of vehicles of class 2 increases, the velocity of both classes increase.
However, in this model, class 2 does usually not denote trucks but for example scoot-
ers. Since scooters are smaller than cars, pores remain large even at relatively high
scooter densities. Therefore, also velocities are high at high scooter densities, which is
reasonable in this context.

7.2 Review of requirements 7-9

In this section we formulate mathematically Requirement 7, 8 and 9 which are related
to nonincreasing velocity, finite characteristic velocity and anisotropy, respectively.
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This allows us to assess whether the generic and other multi-class models satisfy the
requirements. We are only interested in the requirements for ‘permissible’ traffic states.
With permissible we mean that the class-specific densities and class-specific velocities
must all be nonnegative. If one or more of them is negative, this implies a traffic state
that will not appear in reality and is thus not permissible. In the rest of this chapter,
we only discuss permissible traffic states, however, for readability we do not always
mention it.

For later reference we first summarize the Lagrangian formulation of the generalized
multi-class kinematic wave model (6.17), (6.19), (6.20) and (6.27) from the previous
chapter. The model consists of the following three equations:

ds, S, 0v, v,—Vvios,

vy =vi(s) =V <%> =w(p) (7.3b)
_1_ 1 _ 1
S_p p(pla'“?pU) i i e
P S17 ’SU

Later, we need the conservation equation (7.3a) in matrix vector notation. Therefore,
we reformulate it as:

95 . dF
E+J(S)% =0 (7.4)

with s the vector of class-specific spacings:

S1
5= (7.5)
SU
and Jacobian matrix:
al ccoaiu
J=1: -~ (7.6)
ay,1 -+ auyu
with the entries in the Jacobian matrix J defined by:
i OVi v —v; . .
— + for i = j (on the diagonal) (7.7a)
S1 8si S1
aij = ¥
Si aV,‘ . s .
— for i # j (off the diagonal) (7.7b)

s1 05
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In (7.7) we find the elements a; ; of the Jacobian J(5) by applying:

W _van | avds, | ovow
on  ds; dn dsjon  dsy dn

(7.8)

For readability we write v, instead of v}, in the following whenever it is clear from the
context that we mean the velocity as a function of the spacing s.

7.2.1 Requirements for mixed-class models

We first discuss the requirements in the context of mixed-class models. In the next
subsection we extend the concepts to multi-class models.

Requirement 7 states that the velocity v is a nonincreasing funtion of the density p. In
a mixed-class model this implies that the density-velocity fundamental relation v(p)
must be nonincreasing. The requirement can also be formulated in Lagrangian co-
ordinates. In Chapter 6 the density-velocity fundamental relation was reformulated
in Lagrangian coordinates. This results in the spacing-velocity fundamental relation
v¥(s), with v* the velocity and s = 1/p the spacing. If v(p) is nonincreasing, its de-
rivative is nonpositive: dv/dp < 0. The sign of the derivative of the spacing-velocity
fundamental relation v*(s) is opposite to that of v(p):

dv*_dvdp_dvi(l)_ 1 dv

=———=— - )= 7.9
ds dpds dpds\s s2dp (79)
Consequently, the density-velocity fundamental relation is nonincreasing (and thus Re-
quirement 7 is satisfied) if and only if the spacing-velocity fundamental relation is

nondecreasing.

Requirements 8 and 9 state that the model must have finite characteristic velocities
and that it is anisotropic. We recall from Chapter 3 that also anisotropy relates to the
characteristic velocity. In a mixed-class model the characteristic velocity c(p) equals
to the slope of the density-flow fundamental relation:

cp) =3

= A
P)=p (7.10)

Or, equivalently, the characteristic velocity with respect to the Lagrangian coordinate
system (¢,n) is equal to the slope of the spacing-velocity fundamental relation:

B dv*
~ds

c*(s) (7.11)
A mixed-class model has finite characteristic velocities if the derivative dg/dp (or
equivalently dv*/ds) exists and is finite. This is the case if its fundamental relation
is continuous and continuously differentiable. A model with finite (or real) character-
istic velocities is sometimes referred to as hyperbolic. Because this term is not used
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consistently in the traffic flow literature, we avoid it here.

Anisotropy means that characteristics are not faster than vehicles: information does
not travel faster than vehicles. A mixed-class model is anisotropic if its characteris-
tic velocity is not larger than its vehicle velocity. In Eulerian coordinates this implies
¢ <v. In Lagrangian coordinates, the characteristic velocity c* is the velocity of the
characteristics with respect to the coordinates. Since the coordinates move with the
velocity of the vehicles, the model is anisotropic if the characteristics do not ‘over-
take’ the coordinates. That is, the model is anisotropic if the characteristic velocity is
nonnegative: ¢* > 0.

7.2.2 Requirements for multi-class models

We now extend Requirements 7-9 to multi-class models and define them mathemati-
cally. In a multi-class model, Requirement 7 implies that all class-specific velocities
must be nonincreasing functions of all class-specific densities. That is: if one vehicle
of a certain class is added (and the densities of all other classes remain the same) the
velocities do not increase.

Definition 7.1 (Nonincreasing velocity). The multi-class traffic flow model with fun-
damental relation v = vi(p1,...,pv) has nonincreasing velocities if and only if for all
permissible traffic states and all classes i and j

8v,~
<0 (7.12)
Ip;

For the other two requirements (8 and 9) we need some more details on weak hyper-
bolicity, eigenvalues and characteristic velocities. In a multi-class model there are as
many characteristics as classes. Their velocities are equal to the eigenvalues A, of the
Jacobian (see LeVeque, Section 2.9 or any standard work on differential equations the-
ory). Therefore, the model has finite characteristic velocities if all eigenvalues of the
Jacobian are real and finite. This is equivalent to real and finite characteristic velocity
¢ (or ¢*) in mixed-class models. However, this does not imply that the derivative of
the multi-class fundamental relation dg, /dp must be real and finite, because in general
the eigenvalues of the Jacobian are not equal to the derivative of the fundamental rela-
tion. We first analyze whether the model has real characteristic velocities. A model is
weakly hyperbolic if the eigenvalues of the Jacobian are real, but not necessarily finite.

Definition 7.2 (Weak hyperbolicity). The multi-class traffic flow model with conserva-
tion equation (7.4) is weakly hyperbolic if and only if for all permissible traffic states
the eigenvalues of the Jacobian (7.6) are real.

The second step is to analyze whether the characteristic velocities are furthermore
finite.
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Definition 7.3 (Finite characteristic velocity). The multi-class traffic flow model with
conservation equation (7.4) has finite characteristic velocities if and only if for all
permissible traffic states the eigenvalues of the Jacobian (7.6) are real and finite.

In the Lagrangian formulation the Jacobian is defined by (7.6) and its eigenvalues are
the characteristic velocities with respect to the Lagrangian coordinate system. The
Lagrangian coordinate system travels with the same velocity as the vehicles of class
1. Therefore, the model is anisotropic if the vehicles of class 1 are the fastest vehicles
and if furthermore the eigenvalues of the Jacobian are nonnegative: A, > 0.

Definition 7.4 (Anisotropy). If class 1 is the fastest class in all permissible traffic
states, then the multi-class traffic flow model with conservation equation (7.4) is an-
isotropic if and only if for all permissible traffic states the eigenvalues of the Jacobian
(7.6) are nonnegative.

We note that a model can only have finite characteristic velocities (real and finite ei-
genvalues) if it is weakly hyperbolic (real eigenvalues). Furthermore, a model can only
by anisotropic (nonnegative eigenvalues) if it is weakly hyperbolic. Finally, in the next
section (Section 7.3) it will turn out that nonincreasing velocity is a sufficient (but not
necessary) condition for weak hyperbolicity. The relations between weak hyperbolici-
ty, nonincreasing velocity, finite characteristic velocities and anisotropy are shown in
Figure 7.1. The details are discussed in Section 7.3.

The vehicle velocities and eigenvalues of the Jacobian and therefore also the char-
acteristic velocities depend on the traffic state. Therefore, a model may satisfy the
requirements for certain values of the class-specific densities and not for others. How-
ever, we require that a traffic flow model satisfies the requirements for all permissible
traffic states.

7.3 Assessment of generalized model

In this section we prove that the generalized model, under certain conditions, satisfies
Requirement 7, 8 and 9. We use Figure 7.1. We first consider the conditions for which
the model has nonincreasing velocities v, (Requirement 7), i.e. for which the model is
in the upper circle of the diagram. Secondly, we consider the conditions for which the
model is weakly hyperbolic. It turns out that all models that have nonincreasing velo-
cities are weakly hyperbolic. This implies that all models that are in the upper circle
of the diagram are weakly hyperbolic. Thirdly, we consider the conditions for which
the model has finite characteristic velocities (Requirement 8). It turns out that a model
satisfies this requirement if the velocity is nonincreasing and if furthermore the funda-
mental relation and the effective density function are bounded and continuous. This is
shown in Figure 7.1 by the lower left circle. Fourthly, we consider the conditions for
which the model is anisotropic (Requirement 9). It turns out that a model is anisotropic
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nonincreasing

ov:
velocity a—;l <0
J

finite
characteristic
velocity
|Ay| < oo

anisotropic
A <0

weakly hyperbolic
A eR

Figure 7.1 Categorization of Requirements 7, 8 and 9 for multi-class traffic flow mo-
dels. If all requirements are satisfied, the model is in the center area with the check-
mark (V).

if two conditions holds. First, the velocities v, are nonincreasing. Secondly, there is
a class that is not slower than any other class in any permissible traffic state. This is
shown in Figure 7.1 by the lower right circle. We note that weak hyperbolicity (real
eigenvalues) is not a requirement itself. However, it is a necessary (but not sufficient)
condition for all Requirements 7, 8 and 9.

In this section we show that Requirement 7, 8 and 9 are satisfied if the following
conditions hold:

Condition 7.1 (Nonincreasing effective density-velocity fundamental relation). The
class-specific velocity v; expressed as a function of the effective density p is nonin-
creasing. That is, for all classes i:
v
<o (7.13)
dp
Condition 7.2 (Nondecreasing effective density). The effective density p is a nonde-
creasing function of the class-specific densities:

<y (7.14)

dp; —
Condition 7.3 (Continuous fundamental relation). The fundamental relation is either
continuously differentiable or it is bounded and continuous. Furthermore, the effective
density function is either continuously differentiable or it is bounded and continuous.

As we will see later, the condition that the fundamental relation or the effective density
function is bounded and continuous is a sufficient, but not necessary, condition. We
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will show that if it is bounded and continuous, it can be approximated by a continuously
differentiable fundamental relation or effective density function.

Condition 7.4 (Fastest class). There is one class j that is not slower than any other
class i in all traffic states. That is for some class j, for all classes i:

Vi 2V (7.15)

In the remainder of this section we will discuss the relation between Requirement 7-9,
Definition 7.1-7.4 and Condition 7.1-7.4. We show that the generic multi-class model
satisfies the nonincreasing velocity requirement (Requirement 7, see Definition 7.1)
if both Condition 7.1 and 7.2 hold. Furthermore, if Conditions 7.1 and 7.2 hold, the
model is weakly hyperbolic (see Definition 7.2). Weak hyperbolicity is a necessary
condition for both the finite characteristic velocity requirement (Requirement 8, see
Definition 7.3) and the anisotropy requirement (Requirement 9, see Definition 7.4).
For Requirement 8 to be satisfied, also Condition 7.3 hold must hold. For Requirement
9 to be satisfied, also Condition 7.4 hold must hold.

7.3.1 Nonincreasing velocities

We show the generalized model has non increasing velocities in Condition 7.1 and 7.2
are satisfied. It may be possible to directly assess whether the class-specific velocity
is a nonincreasing function of the class-specific densities, i.e. whether (7.12) holds for
all classes i and j. However, the velocity can be written as a function of the effective
density and the effective density as a function of all class-specific densities. Therefore,
we formulate the following theorem.

Theorem 7.1. The generalized multi-class model has nonincreasing velocities, i.e. it
satisfies (7.12), if both Condition 7.1 and Condition 7.2 are satisfied.
Proof. The left-hand side of (7.12) can be rewritten as:

8v,- 8v,- dp
SALAS A & (7.16)
dpj dpdp;

If Condition 7.1 and 7.2 are satisfied, then the right-hand side is nonpositive and thus
(7.12) holds. O

7.3.2 Preliminaries for characteristic velocities

If there are U classes, the Jacobian J (7.6) is a U by U matrix. In the general case
with large number of vehicle classes (U > 4) the eigenvalues A; of the Jacobian can not
be computed analytically. However, we are able to determine whether they are real,
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finite and nonnegative. Therefore, we need the following preliminaries, which implies
that the characteristic velocities are real, finite and nonnegative. The first one is an
application of a generalized Taylor series approximation and was proven by (Hille &
Phillips, 1957):

Preliminary 7.1. Any bounded continuous function has a series approximation that
converges to the value of the function itself.

The other preliminaries are results from basic linear algebra (see e.g., (Strang, 1988)):

Preliminary 7.2. The matrices A and SAS™' have the same eigenvalues for any in-
vertible matrix S of appropriate size.

Preliminary 7.3. The eigenvalues of a real and symmetric matrix are real.

Preliminary 7.4 (Gershgorin’s circle theorem). Suppose A is an n X n matrix. Each
eigenvalue of A lies in one of the circles C,...,C,, where C; has its center at the
diagonal entry a; ; and its radius ri =} j4; |ai,j| is equal to the absolute sum of the rest
of the row.

The last preliminary is about Gaussian elimination. Gaussian elimination is the pro-
ces in which a matrix A is converted into an upper triangular matrix. This is done
by subtracting the first row of the matrix a;;/a; ; times from all rows i. The first
entry of the rows become zero by this process: a | — (a2,1/a1,1) xa1,1 =0, az; —
(az.1/ai1) x ar1 =0, etc. Subsequently, the second row is subtracted from the third
to last row a;> /az o times. Again, this leads to zeros, now in the second columns:
asn — (a372/a272) Xayr = 0, asn — (a472/a272) Xayr = 0, etc. Then the third row is
subtracted from the fourth to the last row leading to zeroes in the third column, etc.
Once the second last row has been subtracted from the last row, the matrix has been
converted into an upper triangular matrix.

Preliminary 7.5. Suppose A is a symmetric matrix. Pivots are the entries at the main
diagonal after applying Gaussian elimination. If all pivots are nonnegative, then all
eigenvalues are nonnegative.

Furthermore, we define two matrices that will be applied later. First, the diagonal
matrix D has zeros everywhere except on the main diagonal. The elements at the main
diagonal are defined by:

1 ds /dv;
s_,a_s, o (7.17)

Secondly, the matrix M is defined by
M=DJD' (7.18)

with J the Jacobian (7.6).
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7.3.3 Weak hyperbolicity

We show that the generalized model is weakly hyperbolic if the velocities are non-
increasing, i.e. if (7.12) holds for all classes i and j. In other words: nonincreasing
velocity is a sufficient condition for weak hyperbolicity, but it is not a necessary condi-
tions, see Figure 7.1. Therefore, we first show that (7.12) is equivalent to the condition
that the Lagrangian fundamental relation does not decrease. Secondly, we show that
the eigenvalues of matrix M (7.18) are real if the Lagrangian fundamental relation does
not decrease. Finally, we show that the model is weakly hyperbolic if the matrix M
has real eigenvalues.

Lemma 7.1. The Eulerian fundamental relation does not increase (i.e. (7.12) holds) if
and only if the Lagrangian fundamental relation does not decrease:

% >0 (7.19)
8Sj

Proof. We rewrite the left-hand side of (7.19):

Bvi_avidpj_8v,~ d (1)__(9\/,' 1 (7.20)
dsj  dpjds;  Ipjds; \pj Ip; (p))? '
2 - . . aVi aVi .
The last term (1/(p;)~) is positive. Therefore, the signs of o and % are opposite
Sj J
and we conclude that (7.12) and (7.19) are equivalent. O

Lemma 7.2. If (7.19) holds for all classes i and j, then matrix M (7.18) has real
eigenvalues.

Proof. We show that matrix M is real and symmetric. By substituting the elements of
the Jacobian J (7.6) and the diagonal matrix D (7.17) into matrix M (7.18) we find its
elements:

i Vi | Vi—V fori=j (7.21a)

(on the diagonal)

ajj= ———
Y sy s 51

1 ds / dvi
L5/ B o e [aviom forizj  (7.21b)

i g1 dsi s
] ‘as/ Sisidsp s\ 9595 (off the diagonal)

sj ds;

From (7.21a) we conclude that the elements on the main diagonal of M are real be-
cause the Jacobian J with elements a; ; is real. In the last equality of (7.21b) we use
that (dv;/ds)(ds/ds;) = dv;/ds;. If (7.19) holds, then both fractions under the last
square root sign of (7.21b) are nonnegative and thus m; ; is real. From (7.21b) we
furthermore conclude that m; ; = m;; and thus matrix M is symmetric. Now, we have
shown that matrix M is real and symmetric. We apply Preliminary 7.3 to conclude that
the eigenvalues of M are real. O]
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Theorem 7.2 (Weak hyperbolicity). The generalized multi-class model with conserva-
tion equation (7.4) is weakly hyperbolic if both Condition 7.1 and 7.2 are satisfied.

Proof. From Theorem 7.1 we conclude that the velocity is nonincreasing and thus
(7.12) holds for all classes i and j. Using Lemma 7.1 and 7.2 we conclude that the
eigenvalues of M are real. From Preliminary 7.2 we conclude that by construction the
eigenvalues of the Jacobian J (7.6) are equal to the eigenvalues of matrix M. Con-
sequently, the eigenvalues of the Jacobian J are real. Using the definition of weak
hyperbolicity (Definition 7.2) we conclude that the model is weakly hyperbolic. 0

We remark that M may also have real eigenvalues if (7.12) does not hold for all classes
i and j. Therefore, the model may also be weakly hyperbolic if (7.12) does not hold
for all classes i and j. We do not provide an assessment procedure for this case, partly
because nonincreasing velocity is a reasonable requirement itself.

7.3.4 Finite characteristic velocities

We show that the model has finite characteristic velocities if it is weakly hyperbolic
and if furthermore both the fundamental relation and the effective density function are
bounded and continuous. (Condition 7.3). In other words, weak hyperbolicity is a
necessary but not sufficient condition for finite characteristic velocities, see Figure 7.1.

Theorem 7.3. The generalized multi-class model with conservation equation (7.4) has
finite characteristic velocities if Condition 7.1, 7.2 and 7.3 hold.

Proof. From Theorem 7.2 and Definition 7.2 we conclude that the model has real ei-
genvalues and is weakly hyperbolic. What remains is to show that the eigenvalues are
furthermore finite. Condition 7.3 states the fundamental relation v, = v, (p) and the ef-
fective density function p = p(py,...,py) are continuously differentiable or bounded
and continuous. If they are continuously differentiable, the derivatives dv;/dp and
dp/dp; exist (are finite). Therefore, also the partial derivatives dv;/dp; and dv;/ds;
exist (are finite). If the fundamental relation and effective density function are not
continuously differentiable, but they are bounded and continuous, then we apply Pre-
liminary 7.1. From Preliminary 7.1 we conclude that the fundamental relation and the
effective density function can be approximated arbitrarily closely by a continuously
differentiable function with finite partial derivatives dv;/ds;. Furthermore, spacings
are nonzero (s, # 0) and thus all entries of matrix A (7.7) are finite: |a; j| < oo, We ap-
ply Preliminary 7.4 (Gershgorin’s circle theorem) to conclude that also the eigenvalues
of the Jacobian J are finite. From Definition 7.3 we conclude that the model has finite
characteristic velocities. ]
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7.3.5 Anisotropy

We show that the generalized model is anisotropic if it is weakly hyperbolic and if fur-
thermore there is a fastest class (Condition 7.4). In fact, we only show that if the model
has nonincreasing velocities v, (is in the upper circle of Figure 7.1) and if furthermore
there is a fastest class, the model is anisotropic. As the figure shows, the model may
also be anisotropic if the velocity is increasing. However, we do not consider that case
because non increasing velocity is a reasonable requirement itself.

In this subsection, we first show that if there is a fastest class, the model may be refor-
mulated such that class 1 is the fastest class. Therefore, in Lagrangian coordinates the
coordinate system moves with the velocity of the fastest class. Consequently, the mo-
del is anisotropic if the characteristic velocities are nonnegative, i.e. if the eigenvalues
of the Jacobian J are nonnegative.

Lemma 7.3. The generalized multi-class model that satisfies Condition 7.4 may be
rewritten such that in all traffic states class 1 is not slower than any class i:

Proof. Assume that class j is the fastest class, i.e. it is not slower than any other class
in any permissible traffic state. The classes can be reordered such that class j becomes
class 1. Now, class 1 is the fastest class. Only after this reordering the generalized
model (in Eulerian coordinates) is reformulated in Lagrangian coordinates. ]

Lemma 7.4. Matrix M defined by (7.18) has nonnegative eigenvalues if (7.19) holds
for all classes i and j and if furthermore (7.22) holds for all classes i.

Proof. From Lemma 7.2 we conclude that M is real and symmetric. The rest of this
proof consists of applying Gaussian elimination and showing that M has nonnegative
pivots. Next, from Preliminary 7.5 we conclude that M has nonnegative eigenvalues.

The first step of Gaussian elimination consists of subtracting m; j /mj ; times row 1
from each row i. This gives zeros on column 1, except for row 1. Applying this
subtraction and using the definitions of matrix A (7.7) and of matrix M (7.21) gives
matrix M with:
ifi=1 (row 1):

_ SIS [avion \/ﬁ%% (.23

A 51 dsy ds; V) s 95y ds;
if j=1,i%# 1 (column 1, except for row 1):

Mg = 0 (7.23b)
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if i = j, i # 1 (diagonal, except for row 1):

d; d;
_ miimi; iai,lzal,i S dvi vi—v; s dv;
Mij = M= — =i T = o 9
mi at,i S1 0Sj S1 S1 0S;

)

G S (7.23¢)
S1

ifiz# 1, j# 1,i# j (everywhere else, i.e. not row 1, not column 1, not on the diagonal):

d . d
. . . =5-aj17.41. . .
_ m; 1my, d; a4, %i1g 41, a;1ai,
mi; = mijj——] = —aw——] =al~7j——] =0 (723d)
mi 1 d; aip a1

)

Both in (7.23c) and (7.23d) we use that i # 1 and j # 1 and apply (7.7b) to find:

s; dv; 519V
a,-71a17j _ 51 8s1 51 asj _ ﬁ@ (7.24)
ai s10vi 51 05
51 3S1
For clarity, we write the matrix M as derived in (7.23) in matrix form:
8\/1 52 8\/2 8v1 SU 8\/[] 8v1
dsi 510851 dsy s1 dsy dsy
- Vi—W2
M= 0 (7.25)
S1
0 V1 —Vu
51

In this case, one step of Gaussian elimination is enough to get an upper triangular
matrix with zeroes below the main diagonal. The pivots are the elements at the main
diagonal of M. The pivots are nonnegative if the Lagrangian fundamental relation
does not decrease (i.e. (7.19) holds) for class i = 1 and j = 1, and if furthermore the
class 1 is the fastest class (i.e. (7.22) holds for all classes 7). From Preliminary 7.5 we
conclude that the eigenvalues of M are nonnegative. [

Theorem 7.4. The generalized multi-class model with conservation equation (7.4) is
anisotropic if Condition 7.1, 7.2 and 7.4 hold.

Proof. Lemma 7.3 shows that the model can be rewritten such that class 1 is the fastest
class and thus the coordinate system moves with the velocity of the fastest class. It
remains to show that the characteristics are not faster than the coordinates. In other
words, we need to show that the eigenvalues of the Jacobian J are nonnegative. In the
proof of Theorem 7.2 we show that the eigenvalues are real and that they are equal to
the eigenvalues of the matrix M. Using Lemma 7.4 we conclude that the eigenvalues of



146 Multi-class continuum traffic flow models: Analysis and simulation methods

M and thus also of the Jacobian J are nonnegative. Using the definition of anisotropy
(Definition 7.4) we conclude that the model is anisotropic. O

We conclude that the generalized multi-class traffic flow model has nonincreasing ve-
locity (Requirement 7) and is weakly hyperbolic if the fundamental relation is nonin-
creasing (Condition 7.1) and if the effective density function is nondecreasing (Condi-
tion 7.2). The model has finite characteristic velocities (Requirement 8) if furthermore
the fundamental relation is continuously differentiable, i.e. if dv;/dp; exists for all
classes i and j (Condition 7.3). Finally, the model is anisotropic (Requirement 9) if
it is weakly hyperbolic and if furthermore there is a fastest class (Condition 7.4). We
note that the conditions for hyperbolicity and anisotropy discussed in this section, are
only sufficient conditions: they are not necessary. In other words, there may be models
which do not satisfy the conditions but are still hyperbolic or anisotropic. However, in
the next section, it turns out that the sufficient conditions are useful to assess the multi-
class models discussed in Chapter 5 with respect to the requirements on characteristic
velocities.

7.4 Assessment of multi-class models

All multi-class models that are discussed in Chapter 5 are assessed. It is verified
whether they satisfy Requirement 7, 8 and 9. Therefore, we use the Condition 7.1-7.4
introduced in the previous section. Like in the assessment of the other requirements
(Section 7.1) we do not repeat the model equation here but refer to Table 5.2 for an
overview of all multi-class models and Figure 5.1 for examples of their fundamental
relations. Furthermore, we assume that the parameters have feasible values.

7.4.1 The model by Logghe & Immers

We show that the model by Logghe & Immers satisfies all requirements related to
nonincreasing velocity, finite characteristic velocity and anisotropy.

Lemma 7.5. The fundamental relation of the model by Logghe & Immers defined and
reformulated in Section 5.2.1 satisfies Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity v; is a nonincreasing func-
tion of the effective density p. The derivative of the velocity function is:

0 (free flow) (7.26a)

Mu _ P1,
op ) —wy (pj;;n <0  (congestion) (7.26b)

We conclude that the model by Logghe & Immers satisfies Condition 7.1. ]
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Lemma 7.6. The effective density function of the model by Logghe & Immers defined
in Section 5.2.1 satisfies Condition 7.2.

Proof. Condition 7.2 states that the effective density p is a nondecreasing function of
the class-specific densities p;. We determine the derivative of the effective density p to
the class-specific densities p; and p; separately. The derivative of the effective density
to py is:

( undefined (free flow) (7.27a)
_Praic g (semi congestion) (7.27b)
d_p . P2, crit — P2
dp; W1P1 jam + —Wziz’jam
o 2 >0 (congestion) (7.27¢)
\ w1 +wp (% — 1>

The inequalities hold because in semi-congestion P < P ¢ and in congestion py <
P2 jam- The derivative of the effective density to ps is:

( undefined (free flow) (7.28a)
i P2 crit -p1 >0 (semi congestion)  (7.28Db)
a = (p2,crit - p2)
) ) .
W1P1,jamW2P2 jam 5P1 >0  (congestion) (7.28¢)
\ (w1 P2+ w2(P2jam — PZ))

The inequalities hold because in semi-congestion P < P ¢ and in congestion py <
P2 jam- We conclude that Condition 7.2 holds. ]

Theorem 7.5. The model by Logghe & Immers defined in Section 5.2.1 has nonin-
creasing velocity and finite characteristic velocity and is anisotropic.

Proof. From Lemma 7.5 and 7.6 and Theorem 7.1 we conclude that the velocities
are nonincreasing. By furthermore applying Theorem 7.2 we conclude that the model
is weakly hyperbolic. Both the fundamental relation v, (p) and the effective density
function are bounded continuous function and thus Condition 7.3 holds. We conclude
from Theorem 7.3 that the characteristics have finite velocity. Finally, the class with
the largest maximum velocity v, max 1s not slower than the other class in any traffic
state, 1.e. Condition 7.4 holds. From Theorem 7.4 we conclude that the model is
anisotropic. O

7.4.2 The model by Ngoduy & Liu

The model by Ngoduy & Liu satisfies all requirements related to nonincreasing ve-
locity, finite characteristic velocity and anisotropy conditionally. We show that the
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conditions are satisfied if for all classes i and j the pce-values are constant:

dn;
T (7.29)

dp;

and if furthermore for all classes i and j:
i < 2n; (7.30)

Lemma 7.7. The fundamental relation of the model by Ngoduy & Liu defined and
reformulated in Section 5.2.2 satisfies Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity v; is a nonincreasing func-
tion of the effective density p. The derivative of the velocity function is:

Vu,max — Verit

<0  (free flow) (7.31a)
avu — pCI'lt
Ip - pjam <0 (congestion) (7.31b)
"oy
We conclude that the model by Ngoduy & Liu satisfies Condition 7.1. U

Lemma 7.8. The effective density function of the model by Ngoduy & Liu defined in
Section 5.2.2 with constant pce-values (i.e. (7.29) holds) satisfies the nondecreasing
effective density Condition 7.2 if and only if (7.30) holds for all classes i and j.

Proof. Condition 7.2 states that the effective density p is a nondecreasing function of
the class-specific densities p;. We determine the derivative of the effective density p
to the class-specific density p; and show that it is only nonnegative if (7.30) holds for
all classes i and j. We apply respectively the effective density function p = )p'", the
chain rule, the harmonic average pce-value 1 = P the quotient rule and again

Ly pu/ M’
the harmonic average pce-value and the quotient rule to find the derivative:

o dnl _dp™
dpi P dpi+n dp;

d ptot ) _ dptot
— tot_ > +
P dp; (Zu pu/ma) dpi
dptot
Pu tot
LB ) .

£ i
u pl
(z.2)
. dptot _ d pu
-1 (2 dp;  dp; (Znu)>

. dpy dn,
_ dpu v “dp; "“dpi
= 2L Ly 732
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Since the pce-values are constant (dn,/dp; = 0), the second term in the numerator
drops out. Furthermore, dp;/dp; = 1 and for all u # i the derivative is dp,/dp; = 0.
Finally, we find:

d_ ,—7(2_%) (733)

The derivative (7.33) is nonnegative if and only if n; < 27. We conclude that Condition
7.2 is satisfied if and only if (7.30) holds for all classes i and j. [

Lemma 7.8 shows that the difference between pce-values can not be ‘too large’. If one
of them is more than 2 times larger than any other, the effective density decreases.

Theorem 7.6. The model by Ngoduy & Liu defined in Section 5.2.2 has nonincreasing
velocity, finite characteristic velocities and is furthermore anisotropic if for all classes
iand j (7.29) and (7.30) hold.

Proof. From Lemma 7.7 and 7.8 and Theorem 7.1 we conclude that the velocities
are nonincreasing if (7.29) and (7.30) hold for all classes i and j. By furthermore
applying Theorem 7.2 we conclude that the model is weakly hyperbolic. Furthermore,
both the fundamental relation v, (p) and the effective density function p(py,...,pv)
are bounded and continuous functions and Condition 7.3 holds. We conclude from
Theorem 7.3 that the characteristics have finite velocity. Finally, the class with the
largest maximum velocity v, max is not slower than the other classes in any permissible
traffic state, i.e. Condition 7.4 holds. From Theorem 7.4 we conclude that the model
1S anisotropic. 0

We note that we can not conclude that the model does not satisfy the requirements if
(7.29) or (7.30) does not hold for all classes i and j. For example, even if the pce-values
have discontinuities, the model may be anisotropic. However, this would imply infinite
characteristic velocities, which is unrealistic. Finally, Ngoduy & Liu show that their
model is strictly hyperbolic and anisotropic if there are only two-classes. They claim
that it is ‘rather complex’ to verify analytically strict hyperbolicity if there are more
than 2 classes because it is cumbersome or even impossible (for more than 4 classes)
to obtain eigenvalues. We have shown that the analysis can be done without exactly
knowing the eigenvalues.

7.4.3 Fastlane

We show that Fastlane satisfies all requirements related to nonincreasing velocity, fi-
nite characteristic velocity and anisotropy if the parameter conditions introduced in
Section 4.4 are satisfied. Let us first recall Lemma 4.1 and 4.2 (Section 4.5) and the
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reformulation of the parameter conditions introduced in those Lemma’s, for all classes
u:

a, >0, bL<bl <0, 0<bS<bS, d +2blp>0 and oS+ b5p >0

u

(7.34)

The effective density-velocity fundamental relation of Fastlane is equal to that of the
model by Ngoduy & Liu. Therefore, we can apply Lemma 7.7 to show that also in
Fastlane the class-specific velocity is a non increasing function of the effective density
(dv,/dp < 1) and thus satisfies Condition 7.1.

Lemma 7.9. The effective density function of Fastlane with by = 0 satisfies Condition
7.2.

Proof. Condition 7.2 states that the effective density p is a nondecreasing function of
the class-specific densities p;. We determine the derivative of the effective density p to
the class-specific density p; and show that it is nonnegative. Therefore, we substitute
the function f = a; — Y, byp, (4.38) into the effective density function p (4.51b):

p = LuduPu (7.35)

f

The derivative of the effective density is:

d df
u 3 \QuPu) — ) AuPu
ap T PTG R by,

dp; f? f?

(7.36)

We now substitute the other form of the function f = % —bip (4.41)and by =0
to find:

Y auPuy )
—b a; + b; 1 AuPu
dp _ ( P 1P LGP _ Y auPu (ai +bip)

dpi 1 2p

In congestion, the inequality holds because all terms are positive, see (7.34). In free
flow, we apply the second inequality in (7.34) to find b; = 0. All other terms are
nonnegative and thus the inequality also holds in free flow. We conclude that if b =0
then Condition 7.2 holds. O]

>0 (7.37)

Lemma 7.10. The effective density function of Fastlane with by # 0 satisfies Condition
7.2.

Proof. Condition 7.2 states that the effective density p is a nondecreasing function of
the class-specific densities p;. We determine the derivative of the effective density p to



7 Model analysis 151

the class-specific density p; and show that it is nonnegative. We substitute the function
f=a1—Y,b,p, (4.38) into the effective density function p (4.51a) and reorder:

p = /- \/f2+4bl Y @uPu (7.38)
—2b;

We use df /dp; = —b; to find the derivative of the effective density is:

df
o 1 far, Hap e ) abiana
dp; —2by | dpi 2./f2+4b1 T, aupu | 2D 2\/f2+4b1 ¥, aupu
: +2%th
LN U e (7.39)
2b1 VI +4b1 Ly aupu

We now substitute the other form of the function f = (¥, a,p,)/p —bi1p (4.41) in the
f under the square-root sign and observe that the square root term can be written as an
absolute term:

o _ b |, f+25b
dp;  2by 2
l \/(%—bM)) +4b1 Y, aupu
b; f"’z%bl
= l—-———— 7.40
b, (7.40)

ZM:I)Llpu +blp‘
We substitute (Y, a,p,)/p —b1p = f (4.41) in the denominator, rewrite and find:

o _ b
dp; 2b

+2%b | f+2bip| — f+24b
( f bi 1>:ﬂ|f 1P| f p; Y1 (741)

| f+2bip| ) 2D If +2b1p]

We note that the sign of (7.41) is equal to the sign of the numerator. This is be-
cause the signs of all b, are equal (see (7.34)) and thus the first term is nonnegative
(bi/(2b1) > 0). We distinguish between congestion and free flow and analyze these
states separately.

In congestion for all classes u, a, > 0 and b, > 0. Therefore, f = (¥, aupu)/p +b1p >
0 and f+2b1p > 0. Substituting these inequalities in the numerator of the partial
derivative of the effective density (7.41) gives:

\f+2b1p\—f+2%bl:2b1p+2%b1:2b1 (p—l—%) >0 (7.42)

We conclude that in congestion the partial derivative dp/dp, is nonnegative for all
classes u
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In free flow the sign of the term between the absolute-signs can be either positive or
nonnegative: f+2b1p <0 or f+2b1p > 0. In the first case 2b1p < —f and the
numerator of (7.41) becomes:

a

f+2bip| = f+25b1 = = (f+2bip)—f+25"

b
b !

b

— 2| —(f+2b1p)+bip + by
—_— bi

>0

> 2p, (p + Z—) (7.43)

We now substitute af and blf as defined in (4.52a) which gives:

(7.44)

ai Li“‘TV,'.
’f+2b1p’_f+2#bl22b1<p_pcm 1Vi,max )ZO
i

fi (Vi,max - Vcrit)

J

>1
The last inequality holds because in free flow p < pgi¢. In the second case (f +2b1p >
0) we have 2b1p > —f and the numerator in (7.41) becomes:

b a;
\f+2b1p\—f+2#ai = 2b <p+j> >0 (7.45)

l l
The inequality holds as we have already shown in (7.44). We conclude that if by # 0
Condition 7.2 holds both in free flow and in congestion. O]

Theorem 7.7. Fastlane has nonincreasing velocity and finite characteristic velocity
and is anisotropic.

Proof. Fastlane has the same fundamental relation v(p) as the model by Ngoduy &
Liu. From Lemma 7.7 we conclude that Condition 7.1 is satisfied. From this, com-
bined with Lemma 7.9 and 7.10 and Theorem 7.1 we conclude that the velocities are
nonincreasing. By furthermore applying Theorem 7.2 we conclude that the model is
weakly hyperbolic. Both v,(p) and p(py,...,py) are bounded continuous functions
and thus Condition 7.3 holds. We conclude from Theorem 7.3 that the characteris-
tics have finite velocity. Finally, the class with the largest maximum velocity v, max 18
not slower than the other classes in any traffic state, i.e. Condition 7.4 holds. From
Theorem 7.4 we conclude that the model is anisotropic. ]

We note that if the parameters do not satisfy the conditions introduced in Section 4.4
(and repeated in 7.34), the model may not satisfy the requirements related to nonin-
creasing velocity, hyperbolicity and anisotropy. However, we do not consider that case,
partly because the conditions are reasonable.



7 Model analysis 153

7.4.4 The model by Nair et al.

We show that the model by Nair et al. has nonincreasing velocity and finite character-
istic velocity. We do not draw any conclusion on anisotropy of the model.

Lemma 7.11. The fundamental relation of the model by Nair et al. defined and refor-
mulated in Section 5.4.1 satisfies condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity v; is a nonincreasing func-
tion of the effective density p. The derivative of the velocity function is:

v,
dp

wdgy
= |:(1_Crsgll(1_gu)_l) (1_gu)c e (1+Cur)} (1_gu)l+c a(i) Vu,max

1_ _Crs s ur ura
{M(l—gu)c —c 11—(1+Cur)}(l—gu)1+c ag;)uvumax >0
—— <1 =1

(7.46)

The inequality holds because both (1 — gu)chr and v, max are positive and the term
between square brackets and the partial derivative dg, /dp are nonpositive:

ag _ . _ . ai
apu = —Plucrit€ Plurt ap = —DPlucrit€ pru’cm(bmax - bmin)g <0 (7.47)
We conclude that the model by Nair et al. satisfies Condition 7.1. [

Lemma 7.12. The effective density function of the model by Nair et al. defined in
Section 5.4.1 satisfies Condition 7.2.

Proof. Condition 7.2 states that the effective density p is a nondecreasing function of
the class-specific densities p;. The pce-values are constant and thus:

dpl dplZnupu ;>0 (7.48)

We conclude that Condition 7.2 holds. O]

Theorem 7.8. The model by Nair et al. defined in Section 5.4.1 has nonincreasing
velocity, is weakly hyperbolic and has finite characteristic velocities.

Proof. From Lemma 7.11 and 7.12 and Theorem 7.1 we conclude that the velocities
are nonincreasing. By furthermore applying Theorem 7.2 we conclude that the model
is weakly hyperbolic. Finally, both the fundamental relation and the effective density
function are continuously differentiable functions. We conclude from Theorem 7.3
that the characteristics have finite velocity. 0
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We can not draw any conclusion on anisotropy because of the following. The model
is developed to reproduce disordered traffic flow. In this type of traffic flow one class
(e.g., cars) is the fastest class at low densities and another class (e.g., scooters) is the
fastest class at high densities. Therefore, there is no fastest class and Condition 7.4
does in general not hold for the model by Nair et al.. To study the anisotropy of the
model one would need to consider each case with a different fastest class separately,
e.g., the case where cars are fastest needs to be analyzed separately from the case where
scooters are fastest.

7.4.5 Other multi-class models

We show that the models by Chanut & Buisson, Benzoni-Gavage & Colombo and
Wong & Wong satisfy all requirements related to nonincreasing velocity, finite charac-
teristic velocity and anisotropy.

The model by Chanut & Buisson satisfies the non increasing velocity condition (Con-
dition 7.1) because its fundamental relation is equal to that in the model by Ngoduy &
Liu, see Lemma 7.7.

Lemma 7.13. The fundamental relation of the model by Benzoni-Gavage & Colombo
defined and reformulated in Section 5.4.3 with Greenshields’ fundamental relation sat-
isfies Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity v; is a nonincreasing func-
tion of the effective density p. The derivative of the velocity function is:
dvy _ Vu,max

= <0 (7.49)
ap Pjam

We conclude that the model by Benzoni-Gavage & Colombo with Greenshields’ fun-
damental relation satisfies Condition 7.1. [

Lemma 7.14. The fundamental relation of the model by Benzoni-Gavage & Colombo
defined and reformulated in Section 5.4.3 with Drake’s fundamental relation and the
model byWong & Wong satisfy Condition 7.1.

Proof. Condition 7.1 states that the class-specific velocity v; is a nonincreasing func-
tion of the effective density p. The derivative of the velocity function is:

Mo P e ()
= Vu,max€ Peric) - <0 (7.50)
dp  (Perit)”

We conclude that the model by Benzoni-Gavage & Colombo with Drake’s fundamental
relation and the model by Wong & Wong satisfy Condition 7.1. ]
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Theorem 7.9. The models by Chanut & Buisson, Benzoni-Gavage & Colombo and
Wong & Wong defined and reformulated in Section 5.4.2, 5.4.3 and 5.5, respectively,
have nonincreasing velocity and finite characteristic velocities and are anisotropic.

Proof. The model by Chanut & Buisson has the same fundamental relation v(p) as
the model by Ngoduy & Liu. Furthermore, all models have the same effective den-
sity function as the model by Nair et al.. From Lemma 7.7, 7.13, 7.14 and 7.12 and
Theorem 7.2 we conclude that the velocities are nonincreasing. By furthermore ap-
plying Theorem 7.2 we conclude that the model is weakly hyperbolic. The effective
density function and Drake’s fundamental relation are continuously differentiable. The
other fundamental relations are bounded and continuous. We conclude from Theorem
7.3 that the characteristics have finite velocity. Finally, in all models the class with
the largest maximum velocity v, max is not slower than the other classes in any traffic
state, 1.e. Condition 7.4 holds. From Theorem 7.4 we conclude that the models are
anisotropic. 0

We note that Benzoni-Gavage & Colombo proof that their model is hyperbolic and
anisotropic. However, they use a different approach in their proof.

The model by Zhang et al. is the only one that we do not assess based on the cri-
teria for nonincreasing velocity, finite characteristic velocity and anisotropy. This is
because they do not specify a fundamental relation. However, the authors claim that
their model is strongly hyperbolic. Strong hyperbolicity means that eigenvalues are
real and distinct. This is a rather strong requirement for traffic flow models because
of the following. Zhang et al. have shown that the interlacing property holds for their
multi-class model. The interlacing property means that the characteristic velocities
have velocities in between the vehicle velocities. Consequently, in Eulerian coordi-
nates, the eigenvalues have values between the vehicle velocities:

AUSVU<...§)L1§V1 or VUS/,LUS---SVISAI (751)

If eigenvalues are distinct, this implies that not all vehicle velocities can be equal. This
is in contradiction with Requirement 5 stating that class-specific velocities are equal
in congestion. However, as we have already seen, the model by Zhang et al. does
not satisfy Requirement 5. Because of the contradiction between Requirement 5 and
strong hyperbolicity, we only require weak hyperbolicity.

7.5 Conclusions

We developed and applied a framework to assess multi-class kinematic wave traffic
flow models. The models are assessed with respect to the requirements that are pro-
posed in Chapter 3. To assess the models with respect to the requirements related to
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nonincreasing velocity, finite characteristic velocity and anisotropy, we use the gener-
alized model formulation (Chapter 5) and the Lagrangian coordinate system (Chapter
6). The Lagrangian coordinate system is useful to analyze the characteristic velocities.
This analysis is necessary to assess anisotropy. It is a major advantage of the frame-
work that it is not necessary to know the eigenvalues of the model exactly. In other
approaches such as applied by Ngoduy & Liu (2007) the eigenvalues are calculated
exactly. However, this is difficult if there are 3 or 4 classes and impossible is there are
even more classes.

The results of the assessment of the models are summarized in Table 7.1. The table
shows that Fastlane and the model by Chanut & Buisson (2003) are the only ones that
satisfy all requirements unconditionally. Three models (Wong & Wong, 2002; Ngoduy
& Liu, 2007; Nair et al., 2012), only include flow maximization as a requirement for
the numerical method, not for the continuous model itself. The model by Logghe &
Immers (2008) does not allow decreasing velocities in free flow. The model by Ngoduy
& Liu (2007) only satisfies all requirements under rather strict conditions on the pce-
values: they must be constant and not ‘too far’ apart. In all other models the classes
travel at different velocities in congestion. Furthermore, in the models by Nair et al.
(2012); Wong & Wong (2002) and the model by Benzoni-Gavage & Colombo (2003)
with Drake fundamental relation the velocity is not equal to zero for a certain (finite)
jam density. We did not assess anisotropy of the model by Nair et al. (2012). Zhang
et al. (2006) do not specify a fundamental relation and therefore we can only assess it
with respect to a few requirements. Finally, we found some unexpected results in the
models by Logghe & Immers; Nair et al.. In both models the velocity of the ‘small’
class (cars in the model by Logghe & Immers, scooters in the model by Nair et al.)
can increase if some vehicles of the other class (trucks in the model by Logghe &
Immers, cars in the model by Nair et al.) are replaced by vehicles of the ‘small’ class.
This may be reasonable in the foreseen application of the disordered model byNair
et al.. However, it is not reasonable for motorways with lanes, which is the application
Logghe & Immers developed their model for.

The framework to assess multi-class models can be applied to assess any other multi-
class kinematic wave traffic flow model. The assessment consists of the following
steps:

1. Analyze the model formulation with respect to the following:

e [f the model is formulated such that it is contained in the generalized multi-
class model (5.1) or (5.1a), (5.1b) and (5.2) the velocities and flows are
uniquely determined by the class-specific densities (Requirement 1)

e If the model is not formulated in such a way, reformulate the model such
that it is contained in the generalized multi-class model. If this is possible
the velocities and flows are uniquely determined by the class-specific den-
sities (Requirement 1) and the model can be analyzed further.

e Check whether the model prescribes which type of flow needs to be maxi-
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mized (Requirement 2).

2. Analyze the fundamental relation v,(p) or v,(pi,...,py) with respect to the
following:

e In free flow classes may have unequal velocities (Requirement 3).
e In free flow velocities may decrease (Requirement 4).
e In congestion the velocities are class independent (Requirement 5).

e There is a finite jam density at which the velocity of all classes is zero
(Requirement 6).

3. Analyze the fundamental relation v,(p) and the effective density function
p(p1,-..,pu) with respect to the following:

dv; d . .
o If # < 0and % > 0 for all classes i and j the model has nonincreasing
J
velocity (Requirement 7).
e If Requirement 7 is satisfied and if furthermore v, (p) for all classes u and
p(p1,-..,pu) are bounded and continuous functions, or if they are continu-
ously differentiable, the model has finite characteristic velocities (Require-

ment 8).

Alternatively, if this is not possible because the fundamental relation and the
effective density function can not be separated, analyze the fundamental relation
vu(p1,- .., pu) with respect to the following:

v
o If 8—;1 < 0 for all classes i and j the model has nonincreasing velocity
J
(Requirement 7).
e If Requirement 7 is satisfied and if furthermore v, (py,...,py) is a bounded

and continuous function for all classes u, or if it is continuously differenti-
able, the model has finite characteristic velocities (Requirement 8).

4. Analyze whether there is one class that is not slower than any other class in any
permissible traffic state. If Requirement 7 and 8 are satisfied and if furthermore
there is such a class, the model is anisotropic (Requirement 9).

We note that the conditions for the last three requirements are sufficient, but not ne-
cessary conditions. For example, a model may be anisotropic even if it does not have
finite characteristic velocities. Finally, this framework for the assessment of multi-class
models, can also be applied in the development of new models.
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Table 7.1 Assessment results of multi-class models.
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Chapter 8

Numerical methods for mixed-class
models

Numerical methods are used to approximate the solution of the kinematic wave model.
This is needed because in most realistic cases it is impossible to solve the problems
analytically. When a macroscopic model is applied, usually the space and time do-
mains are divided into intervals: road segments (grid cells) and time steps. For each
time step and at grid cell the model equations are solved approximately using numeri-
cal methods. The result is the density in each grid cell, at each time step. Alternatively,
the Lagrangian model formulation is used and space is not divided into grid cells, but
the vehicles are divided into groups. A numerical method is then applied to compute
the position of each group at each time step.

The outline of this chapter is as follows. In the first part of this chapter we discuss
both approaches based on the Eulerian formulation (Section 8.1) and the Lagrangian
formulation (Section 8.2). Time stepping methods are discussed in Section 8.3. Fur-
thermore, we introduce a numerical method based on variational theory in Section 8.4.
In the second part of this chapter we assess the accuracy of the numerical methods.
Therefore, we introduce two novel accuracy measures in Section 8.5. The measures
are especially relevant in traffic flow applications and overcome disadvantages of com-
monly used accuracy measures. In Section 8.6 we discuss and compare the accuracy
of the methods based on the novel accuracy measures. The methods for mixed-class
kinematic wave models introduced in this chapter are extended to multi-class models
and to networks in the next two chapters.

8.1 The minimum supply demand method

The first numerical methods for the kinematic wave model are based on its Eulerian
formulation. Currently, the minimum supply demand method is widely used. In 1994
Daganzo introduces the cell transmission model as a spatially and temporally discrete
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Figure 8.1 Discretization of the LWR model in Eulerian and Lagrangian formulation.
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version of the LWR model. Lebacque (1996) describes the cell transmission model as
a Godunov method. This results in the minimum supply demand method for the LWR
model. The road is partitioned into cells (segments) of length Ax, time is partitioned
into time steps of length Az, see Figure 8.1(a). Within a cell and during a time step the
density, flow and velocity are assumed to be constant. Each time step k a fraction of
the vehicles in the cell is transmitted to the adjacent downstream cell. The new density
p}‘“ = p(jAx, (k+ 1)Ar) of each cell j is calculated as follows:

At
o =g ()

with g€ | the inflow into and ¢f | the outflow out of cell j:
J=3 Jt3

¢, =min (8f ;) (8.1b)

q N
2 e

o Jk the demand:

k
q%  (free flow)
=1~ (8.1c)
deric  (congestion)
G}‘ the supply:
gerit  (free flow)
o) = (8.1d)
k .
g;  (congestion)

and q’]‘. = q(p}‘) the flow derived from the fundamental relation. Demand 5]’-‘ can be
interpreted as the number of vehicles per time unit that want to flow from cell j to
cell j+ 1 during the time step k. Supply G]’-c can be interpreted as the number of
vehicles per time unit that can be fitted in the j + 1-th cell during time step k. Their
values are plotted in Figure 8.2 together with the fundamental relation. Figure 8.9
shows simulation results for simple test problems. The test problem and the results are
discussed in more detail in Section 8.6.

The minimum supply demand method is widely used in traffic flow simulations based
on the LWR model. It is a Godunov method, it is mass (or vehicle) conserving, it finds
the entropy (i.e. flow maximizing) solution and it is first order accurate (Lebacque,
1996; LeVeque, 2002). First order methods are often applied to conservation equations.
In general they are a good choice if the solution contains discontinuities, such as in
traffic flow (LeVeque, 2002). The accuracy of the method is discussed in more detail
in Section 8.6. Finally, the method is stable and converges to the analytical solution if
the step sizes Ax and At satisfy:

_‘ <1 (8.2)
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In fluid dynamics literature p is often referred to as the Courant-Friedrichs-Lewy
(CFL) number (Courant et al., 1967). The condition (8.2) is called the CFL-condition.
Most (realistic) density-flow fundamental relations are steepest at zero density and thus
the maximum slope in absolute terms is equal to the maximum velocity:
max ||dg/dp|| = vmax. Consequently, the CFL-condition can be interpreted as follows:
within a time step, a vehicle can not cross more than one cell boundary.

8.2 Lagrangian formulation and upwind method

Together with the introduction of the Lagrangian formulation of the LWR model Le-
clercq et al. (2007) introduces an upwind discretization method for this model. Before
discussing the upwind discretization, we first note that the minimum supply demand
method switches between an upwind and a downwind spatial discretization (8.1b). Le.
if traffic is in free flow the state in cell j depends on its own state and the state of the
upwind (upstream) cell j— 1:

At

k+1 k k k

pj+ Pj Ax(q-’;l qj) (8.3)
However, in congestion the state in cell j depends on its own state and the state of the

downwind (downstream) cell j+ 1:

k+1
Pj

At

k k k

:W+E%—%ﬁ (8.4)
If not all cells j— 1, j, and j+ 1 are in the same regime (free flow or congestion), then
a combination of both upwind and downwind discretization is applied.

The Lagrangian upwind method does not switch between upwind and downwind dis-
cretization. In the Eulerian formulation the switching between upwind and down-
wind is necessary because characteristics move either downstream (in free flow) or
upstream (in congestion). In Lagrangian coordinates, however, characteristics always
move downwind: in the direction of increasing n. This implies that drivers (or vehicle
groups) only react to leading vehicles (or vehicle groups) and not on followers. There-
fore, the upwind method is simpler and each time step takes less computing time than
the minimum supply demand method. This results in more efficient simulations that
are faster and/or more accurate. In Section 8.6 the accuracy of both methods will be
compared in more detail.

The Lagrangian upwind method is as follows. In the Lagrangian formulation vehicle
number 7 is an independent variable. Consequently, in the discretization, vehicles are
partitioned into groups of An vehicles, see Figure 8.1(b). Just as n, An is not necessarily
integer, it can take any real, positive value. Again, time is partitioned into time steps of
size At. Each time step k, each vehicle group i is moved downstream. Or, if traffic is in
complete stop, the vehicle group remains at its position. Its new position is calculated



8 Numerical methods for mixed-class models 163

with an upwind method:
sl = s{.<+A—(vH —v) (8.5)

with vf-‘ = v(sf?) the velocity derived from the fundamental relation. We note that
this method is much simpler than the equivalent method (minimum supply demand
method) in Eulerian coordinates (8.1). Figure 8.9 shows simulation results for simple
test problems. The test problem and the results are discussed in more detail in Section
8.6.

The upwind method (8.5) has similar properties as the minimum supply demand me-
thod: it is a Godunov method, it is mass (or vehicle) conserving, it finds the entropy (or
flow maximizing) solution and it is first order accurate (Leclercq et al., 2007; LeVeque,
2002). The CFL-number is 1* and the condition for stability and convergence is:
LY

u = Emax

dv

<1 8.6
o (8.6)

Most (realistic) spacing-velocity fundamental relations are steepest at jam spacing. For
example, in the Smulder fundamental relation:

dv

ds

. Verit Verit

max

w
— =Wiam = —— (8.7)
Scrit — Sjam 1/Perit — 1/pjam Piamn Sjam

Consequently, the CFL-condition can be interpreted as follows. It limits the distance
a vehicle groups can travel downstream within one time step. In fact, the distance
between its new position (xf.‘H) and the old position of the leading vehicle group (xi.‘_ D
is at least the characteristic velocity in jam times the time step size: wAf. To put
it precisely: xf_l — xf“ > wAt. This implies that even the fastest characteristics in
the (z,n) plane, namely the characteristics related to jam, are traced with the upwind
method. For readability, in the following the CFL-number for the upwind method p*
is referred to as p, whenever it is not necessary to make a distinction between the
CFL-number for the minimum supply demand method and the upwind method.

Finally, the discretization method can be simplified. With this simplification one dir-
ectly computes the position xf of each vehicle group i at each time step k without
intermediately calculating its spacing. Therefore, the spacing is discretized with an
upwind approximation:

Xi—1—Xj

and the velocity is approximated with an explicit time discretization:

xhl _ yk
Vk = T (89)
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Substituting (8.8) into (8.5) and subsequently multiplying with An gives:

I AR T .10

Furthermore, substituting (8.9) and reordering gives:

= Ak (8.11)
The velocity during the k-th time step vé‘ is determined using the fundamental relation
and (8.8). This method can be interpreted as follows: the new position of group i is its
old position plus the distance it travels during the k-th time step: Atvf? .

The upwind scheme (8.11) is applied by Leclercq et al. (2007) to show the equivalence
between the LWR model and the simplified car-following model by Newell (2002)
under the following conditions:

the fundamental relation g(p) is triangular
the CFL-condition (8.6) is satisfied as an equality
the vehicle group size An = 1

time parameter T (which may be interpreted as reaction time) equals time step
size T = At

Therefore, the Lagrangian coordinate system does not only lead to more efficient nu-
merical methods, it also makes the coupling between macroscopic and microscopic
regions in a hybrid model easier (Leclercq, 2007a).

8.3 Time stepping methods

The minimum supply demand method (8.1) and the upwind method (8.5) apply an
explicit time stepping method. This means that the state variables such as density,
spacing, velocity and flow at the cell boundaries are assumed to be constant during time
step k and equal to their values at its beginning: time t = kAt. Their values only change
at the end of the time step, at # = (k+ 1)Ar. Implicit time stepping methods assume
that the values of the state variables may change during the time step. Chronopoulos
et al. (1993) propose to apply them to higher-order traffic flow models. They show that
larger time steps can be taken and computation time can be reduced. However, this
comes at the cost of some accuracy, as we show later.

We apply implicit time stepping methods using the mixed-class model in Eulerian and
Lagrangian formulation of the LWR model. It turns out that implicit time stepping
methods are best to be applied in combination with the Lagrangian model formulation.
Extension of the method to multi-class models and networks are out of the scope of this
dissertation. We expect that these extensions are possible, but far from straightforward.
It will become computationally more demanding to deal with multiple classes and
inhomogeneities. This may outweigh the main advantage of taking larger time steps.
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Figure 8.3 Information flow in numerical method with implicit time stepping.

8.3.1 Implicit time stepping in the minimum supply demand method

We recall the minimum supply demand method in Eulerian coordinates with explicit
time stepping (8.1). With implicit time stepping the minimum supply demand method
becomes:

At
e k1 k1) _ ok
P;j ﬁ_(qj—é C[j+;>—P] (8.12)

k+1 k+1
| 21
=2 Itz
depend on the actual traffic regimes (free flow or congestion) of the cells j — 1, j and
Jj+ 1 at time t = (k+ 1)At. Therefore, there is no straightforward way to solve this
equation, unless one knows beforehand the regime in each cell at t = (k+ 1)Ar. This
is shown schematically in Figure 8.3(a). In (Van Wageningen-Kessels et al., 2009) we
discuss this approach under the assumption that either the whole computational domain
is in free flow, or it is in congestion. The computations are shown to be more efficient
than with explicit time stepping. However, generalization to cases with both congestion
and free flow is not straightforward. Therefore, the implicit minimum supply demand

with ¢ " the inflow into and ¢" | the outflow out of cell j. The inflow and the outflow

method is difficult to apply in practice and we do not show any simulation results.

8.3.2 Implicit time stepping in the upwind method

We recall the upwind method in Lagrangian coordinates with explicit time stepping
(8.5). With implicit time stepping the upwind method becomes:

At
k+1 k+1 k+1 k
s =il =) = (8.13)

There is a natural order to solve (8.13) for all groups i = 1,2,...,1, namely from the
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first vehicle group (i = 1) to the last group (i = I). The procedure is shown schemat-
ically in Figure 8.3(b). The solution procedure is as follows. Once the new spacing
of the i — 1-th vehicle is known, the fundamental relation can be used to compute its
velocity. The velocity and the spacing of the i-th group are the remaining unknowns.
Substituting the fundamental relation (4.7) and the definition of spacing (6.2) shows

that the following equation is to be solved for sf“:

At — Veri
sl — [vf.‘fll - (vmax - %“—k‘flm>] (free flow)  (8.14a)

An it 8
Sf-c crit 5;
1 AT k+1 :
sith— x [Vifl —w (pjamsl‘ — 1)] (congestion) (8.14b)

We note that both sf.‘ and vi.‘fll are known. We now discuss how (8.14) can be solved in
free flow and in congestion.

f.‘H > Scrit Rewriting

(8.144a) yields that the following quadratic equation needs to be solved:

Let us first assume that the new traffic is in free flow state, i.e. s

k+1\2 k At k41 k-1 Atvma—v~t
(s7)" = (si—g(vmax—vifl))sﬁ & =0 (8.15)

(8.15) has two solutions, only one of which is permissible:

1 2 e
S;(—H = E [(Si< — % (Vmax - V?jf)) + \/(S{{ — % (Vmax - V;{:LII)) + 4%—Vma;;cri:’cm]
(8.16)
The other solution of (8.15) is equal to (8.16) but it has a minus sign in front of the

square root. Therefore, it is nonpositive and the resulting spacing sf.‘ﬂ 1S not permissi-
ble.

Let us now assume that traffic is in congestion state, i.€. Sjam < sf-‘“ < Scrit- Rewriting
(8.14b) yields the new spacing:

k | At k+1
Sl- +El (Vifl +W>

k+1 __
i = At
1+ An WPjam

1

(8.17)

In general, it is not known beforehand whether the new traffic state will be free flow
or congestion and thus whether (8.16) or (8.17) should be applied. Therefore, one
computes the new spacing using both (8.16) and (8.17). If the solution found with
(8.16) is indeed in free flow then this is the correct solution. If the solution found with
(8.17) is indeed in congestion then this is the correct solution. Due to numerical errors,
it may be that (8.16) gives a free flow solution and (8.17) gives a congestion solution.
Or (8.16) does not give a free flow solution and (8.17) does not give a congestion

solution. In such cases it is advisable to set the new spacing to critical spacing: si-‘“ =
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Scrit-

! can be computed and the

Once the new spacing sé‘“ is known, the new velocity vi.‘+
procedure starts again to compute the new spacing of the following vehicle group sffr“ll.
Figure 8.9 shows simulation results for simple test problems. The test problem and the

results are discussed in more detail in Section 8.6.

8.3.3 Discussion

The implicit methods have the same conservation and entropy properties as the expli-
cit time stepping methods. This is because the spatial discretization did not change.
Furthermore, it is still a first order accurate Godunov method. However, the main dif-
ference between explicit and implicit time stepping methods relates to their numerical
stability. When implicit time stepping is applied, much larger time steps can be taken,
without losing numerical stability. In fact, the CFL-condition (8.6) does not need to
be satisfied (LeVeque, 2002). Because larger CFL-numbers u are allowed, larger time
steps can be applied. Therefore, less time steps are necessary and thus the computa-
tion time decreases. However, this comes at the cost of some accuracy, which will be
discussed in more detail in Section 8.6.

There is an important difference between the implicit time stepping methods for the
minimum supply demand method and the upwind method. In the minimum supply
demand method method, the new traffic state in all grid cells has to be computed at
once, see Figure 8.3(a). In contrast, in the upwind method, the new traffic state of
the vehicle groups can be computed group by group, see Figure 8.3(a). Therefore, the
solution procedure for the upwind method with implicit time stepping is simpler than
the procedure for the minimum supply demand method with implicit time stepping. In
the simulations (Section 8.6) we only show results for implicit time stepping with the
upwind method.

8.4 Variational theory and variational method

In 1993a Newell introduces the cumulative count function N(x,?) in a reformulation
of the kinematic wave model. N(x,¢) is the number of vehicles that have passed loca-
tion x at between start time #yp and time ¢. This idea is further developed by Daganzo
(2005a,b) as he applies variational theory to solve the kinematic wave model. We do
not recapitulate their derivation, instead in Appendix B a graphical and more intuitive
interpretation of variational theory applied to the kinematic wave model is given.

Leclercq et al. (2008); Leclercq (2009) show that the variational theory leads to ex-
act solutions under certain conditions. For example, the fundamental relation must
be piecewise linear, its parameter values must be related in a certain way and the ini-
tial traffic state must be piecewise constant. They use variational theory to assess the
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Figure 8.4 Piecewise linear spacing-velocity fundamental relations.

accuracy of the minimum supply demand method and the upwind method with trian-
gular fundamental relation. We extend their accuracy analysis to include piecewise lin-
ear fundamental relations consisting of three parts in (Van Wageningen-Kessels et al.,
2010).

We apply variational theory as an alternative numerical method. We do not require
that the continuous model contains a piecewise linear fundamental relation. However,
the variational theory method needs a piecewise linear fundamental relation. There-
fore, the fundamental relation is approximated by a piecewise linear one. This will
inevitably lead to inaccuracies in the solution. Those inaccuracies will be assessed in
Section 8.6. We note that both in the minimum supply demand method and the upwind
method, the fundamental relation is satisfied exactly in any point in the time space
domain. However, with these methods, there are other sources of inaccuracy such as
numerical diffusion, which will be discussed in more detail later.

8.4.1 Piecewise linear fundamental relation

Figure 8.4 shows piecewise linear fundamental relations. In Lagrangian formulation
the piecewise linear fundamental relation is:

(

(S - Sjam)Wl if s < Serit
Verit + (S - Scrit)WZ if Serir < 8 < 53
. V34 (5 —53)w3 ifs3 <s<s4
v(s) = min (v + (S — Sm)wm) = < ( ) (8.18)
m .
-1+ (s—sy—1)wy—1 ifsy—1 <s<sy
| Vmax if s> sy
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with w,, the characteristic velocities in the Lagrangian coordinate system. They cor-
respond to the slope of the m-th linear part of the fundamental relation:

Vim+1 — Vm

Wy=——"—— iftm#Mandwy =0 (8.19)
Sm+1 — Sm

With only three linear parts, the fundamental relation (8.18) reduces to:

(S - Sjam)wl if 5 < Serit
V(S) =4 Vit + (S - Scrit)WZ if Scrit < 8 < 83 (820)
Vmax if s > 53
with
Veri vV — Veri
wy = crit and Wy = max crit (821)
Scrit — Sjam 83 — Scrit

Figure 8.7 shows how a Smulders fundamental relation can be approximated with a
piecewise linear fundamental relation consisting of three linear parts.

8.4.2 Variational method

Variational theory is applied to solve an initial value kinematic wave problem. First,
the fundamental relation is approximated with a piecewise linear fundamental rela-
tion. In the following we consider a piecewise linear fundamental relation consisting
of three parts. Furthermore, we assume that w; = cw, with ¢ a positive integer. Le-
clercq (2009) shows that only if the fundamental relation is piecewise linear and ¢ = 2,
the solution is exact. The results can be generalized to piecewise linear fundamental
relations with arbitrary many parts and other wave velocities, though the solution may
be less accurate. Secondly, the initial value problem is converted into a minimization
problem on a network. The network consists of nodes and waves with velocities wy,
wy and wi, see Figure 8.5. The waves intersect at nodes with n = iAn and t = kAt,
therefore w; = An/At. At the nodes the position )Zf of the n = iAn-th vehicle at time
t = kAt is calculated using:

£ = min (&) Arr, F5 + ey, B Ay ) (8.22)
with:
ry = —SjamWi
'm = Vm — SmWm = § 12 = Verit — ScritW2 (8.23)
3 = Vmax

We note that the parameters r,, are the velocity values at the intersections of the slope
of the fundamental relation and the velocity axis, see Figure 8.4(b). The variational
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Figure 8.5 Network to solve the kinematic wave problem using variational theory. It
consists of edges with slopes wi = 2wy, wr and w3y = 0 and nodes. The solution is
calculated at the node o using information from three nodes on its left .

method (8.22) solves the kinematic wave problem with piecewise linear fundamental
relation (8.20) and ¢ = 2 exactly, see Appendix B. In the first few time steps of a
simulation, information before the initial time (r = 0) is needed to calculate )Ef‘:f +
cAtry in (8.22). Therefore, not only the initial traffic state, but also the traffic state at
t=—At,t =—2At,...,t = (1 —c)At is required. In our simulations, we simply assume
that the traffic state at # < 0 is equal to the initial traffic state at 1 = 0. However, more
advanced and accurate methods may be thought of.

Figure 8.10 shows that the variational theory method does not converge to the exact
solution if the resolution increases. This is because the fundamental relation is not
piecewise linear. However, the figure also indicates that the variational method does
converge to the exact solution of the analogous problem with piecewise linear funda-
mental relation. This result is discussed in more detail in Section 8.6.

8.5 Test setup and accuracy measures

Traffic flow simulation results are assessed based on their accuracy. Zhang (2001)
has pointed out the importance of validating the numerical method before validating
the model against observations. Therefore, the numerical solution of a simple test
problem should be compared with the analytical solution of the continuous model. We
introduce a simple test problem and accuracy measures. They are applied in the next
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section to assess the accuracy of the numerical methods introduced in the previous
sections.

8.5.1 Test setup

We asses the accuracy of the numerical methods with three simple test cases. They
consist of a homogeneous infinitely long road with, initially, a high density region with
both downstream and upstream low densities. The initial conditions and the traffic state
after some time is shown in Figure 8.6. In the first test case, traffic is in free flow and
the following initial conditions hold:

: if —L<x<0
p(x,0) = { Pt T TE=TE (8.24)
0 otherwise

with the initial length of the high critical region L = 10 km. In the second test case,
traffic is in congestion and the following initial conditions hold:

; if —L<x<0
p(x,0) = Pram B 7E=E= (8.25)
Pcrit  otherwise

with the initial length of the jam density region L = 2 km. In the third test case, there
is a queue with jam density which dissolves. This test problem represents a traffic light
turning green. The following initial conditions hold:

0 ifx>0
p(x,0) = Pjam if —L<x<0 (8.26)
Pupstream ifx<—L

with the initial length of the jam density region L = 2 km and the initial upstream
density Pypstream = % Perit- In all test cases the Smulders fundamental relation (4.7) is
applied. The parameters are as previously used for class 1 in Fastlane, see Chapter 5.
All model parameters are given in Table 8.1.

We chose this test setup because it includes the most important aspects of traffic flow
on a homogeneous road: free flow and congestion, vehicles driving into a queue and
leaving it and spill back of congestion. Furthermore, the Smulders fundamental rela-
tion is a realistic generalization of other fundamental relations and is also applied in
Fastlane. Still, the setup is rather simple and the location and velocity of shock waves
can be computed analytically see Figure 8.6. In the free flow test case there is a shock
wave with velocity equal to characteristic velocity at density just below critical density:

dg

@ (pcrit) = 2Verit — Vmax (8.27)

Werit =
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Figure 8.6 Density profiles in test cases. Solid line: initial density. Dashed line:
density at time t > Q.
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(a) Density-flow. (b) Spacing-velocity.

Figure 8.7 Smulders fundamental relation (solid line) and its piecewise linear approx-
imation (broken line).

Table 8.1 Model parameters.

maximum velocity Vimax 33.3 m/s = 120 km/h
critical velocity Verit 20.8 m/s = 75km/h
critical density Perit 0.033 veh/m = 33 veh/km
jam density Pjam 0.2 veh/m = 200 veh/km
(resulting congestion wave parameter w 4.17 m/s = 15 km/h)

In the queue test case there is a shock wave with velocity depending on the initial
density upstream of the queue:

Qupstream _ Perit Vmax + Verit (8.28)
Pjam — Pupstream 2pjam — Perit 2

Wupstream =

In the base case the numerical parameters are chosen such that the CFL condition
(8.2), (8.6) is satisfied as an equality. We apply: time step size At = 3 s, grid cell size
Ax = 100 m and vehicle group size An = 2.55 vehicle. To study the influence of the
resolution, the time step size At, the grid cell size Ax and vehicle group size An are
varied such that the CFL-number remains tt = 1. The time step size is varied between
At = 0.5 and Ar = 24 s. To study the influence of the CFL-number, the time step size At
is varied, but the grid cell size Ax and vehicle group size An are not. The CFL-number
varies between ¢ = 0.05 and u = 10.

8.5.2 Accuracy measures

Zhang (2001) stresses the importance of assessing the accuracy based on criteria that
are relevant in traffic flow, such as phase (or regime) transitions and wave velocities.
We propose two new accuracy measures that are indeed especially relevant in traffic
flow. Furthermore, they can be applied in validating the numerical method against the
continuous model and in validation simulation results against observations. Here we
focus on validating the numerical method against the continuous model.

Common accuracy criteria use ‘average’ differences between velocities or densities at
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Figure 8.8 Exact and computed densities, with their centroids, phase error and diffu-
sion error. Exact: solid line and solid circle, computed: dashed line and open circle.

many points in space and time. An example is the root mean square error (RMSE). At
a certain time step k the RMSE of the densities pj-‘ 1s:

1 2
Eme =71 (pk— 1) (8.29)

with /5;‘ the exact density in the j-th grid cell at time step k.

We propose two new accuracy measures based on types of accuracy that are especially
relevant in traffic flow applications. It is important to predict correctly the location of a
queue or congestion and especially whether it will spill back as far as an on or off ramp
or not. Furthermore, large jumps in velocities or densities are common in solutions of
the kinematic wave model. Therefore, these discontinuities should be preserved by the
numerical method as well. The new accuracy measures are based on the considerations
above. The phase error measures whether information travels at the correct velocity,
the diffusion error measures how well discontinuities are preserved.
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Phase error

The phase error is about the accuracy of information velocity, see Figure 8.8(b). It
shows a high density region, its exact location and its computed location at some fixed
time. The computed location is downstream of the exact location. The phase error is
measured as the distance (in meters) between the centroids of the areas below the exact
and the computed density. An example density profile and its centroid are shown in
Figure 8.8(a). The x-position centroid can be computed as follows:

S ap()dx 1 (x — xa)?p1 + (xe — %)% P2 + (xa — x)2p1

1
tc=—x == 8.30
T o dr 2 (5 —xa)p1 + (e —Xb)pa+ (g — xe)p1 (8.30)

Similarly, the x-position of the centroid of the area below the computed density xc is
computed. If the minimum supply demand method is applied the centroid is at:

Xl Axpx XX

= = (8.31)

Xc

with j = 1 the most upstream cell in the area of interest, i.e. x; > x,. j=J is the
most downstream cell in the area of interest, i.e. x; < x4. If the upwind method or the
variational method is applied the centroid is at:

1 1
i—1 Anx; o Y%

= (8.32)
i—1An 1

with i = 1 the first vehicle in the area of interest, i.e. x| < x;. i = I is the last vehicle
in the area of interest, i.e. x; > x,. The difference between the x-positions of the exact
and the computed centroid is the phase error:

Ephase = xc —Xc (8.33)

Diffusion error

The diffusion error relates to discontinuous solutions becoming smooth, see Figure
8.8(c). It shows a high density region, its exact density profile and its computed density
profile at some fixed time. The computed profile is smooth, while the exact profile
shows discontinuities (shocks). Just as with the phase error we use the position of the
centroid to measure the diffusion error. We now compute the distance between the
centroids in vehicles per meter, i.e. the vertical instead of the horizontal distance in
Figure 8.8(c). The exact centroid density is computed as follows:

_ 10 —x1)(p1)* + (xe —x3) (P2)* + (g — xc) (1)
2 (xp—x1)p1+ (xe —xp)P2+ (xa — Xc)P1

X, 2
b dx
o= B 0L 5

O 2[pW)
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If the minimum supply demand method is applied the centroid density is:

=1Ax(p)?  Eii(p))’
2% Avp; 2%%p;

pe = (8.35)

If the upwind method or the variational method is applied the centroid density is:

1 1
—1Anp; Y Pi
i=1 l i=1
= = 8.36
pe 2Y!  An 21 (8.36)

The difference between the densities of the exact and the computed centroid is the
diffusion error:

Egits = pc — Pc (8.37)

Finally, Figure 8.8(d) shows a density profile with both a phase error and a diffusion
error. The figure illustrates that the two errors can be measured independently.

In the next section, the phase error and the diffusion error are used to asses the numer-
ical methods from the previous sections.

8.6 Accuracy

Both the minimum supply demand method and the upwind method are first order ac-
curate. That means that the global error is proportional to the grid cell size Ax or the
vehicle groups size An respectively. However, this does not imply that the accuracy of
both methods is similar. We show the differences in accuracy between the minimum
supply demand method and upwind method with explicit and implicit time stepping
and the variational theory by comparing simulation results of the simple test problem
introduced in Section 8.5. We compare the simulation results to each other and to the
exact solution. For the comparison we apply the novel accuracy measures. Further-
more, we discuss which factors (such as resolution and CFL-number) influence the
accuracy.

8.6.1 Simulation results

The numerical solutions of the test cases are shown in Figure 8.9-8.11. The accuracy
of the simulation results is shown in Figure 8.12 and 8.13.

Figure 8.9 shows density plots as a function of time and space. The density is computed
with the different numerical methods: minimum supply demand, upwind with explicit
time stepping, upwind with implicit time stepping and variational theory. It shows
how the exact and numerical density profiles develop over time. The results of the
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Figure 8.9 Density plots of free flow test case with different numerical methods. The
vertical broken line indicates the time for which cross sections are shown in Figure
8.10. The other broken lines indicate sharp boundaries in the analytical solution.
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Continued Figure 8.9 Density plots of congestion test case with different numerical
methods. The vertical broken line indicates the time for which cross sections are shown
in Figure 8.10. The other broken lines indicate sharp boundaries in the analytical
solution.
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Continued Figure 8.9 Density plots of queue test case with different numerical meth-
ods. The vertical broken line indicates the time for which cross sections are shown
in Figure 8.10. The other broken lines indicate sharp boundaries in the analytical

solution.
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Figure 8.10 Density profiles of free flow test case at t = 600 s, computed with different
numerical methods and different resolutions. (See next pages for congestion and queue
test case results.)
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Continued Figure 8.10 Density profiles of congestion test case at t = 600 s, computed
with different numerical methods and different resolutions. (See next page for queue
test case results.) We note that in the upwind method with explicit time stepping and
with the variational method, the results may seem less accurate with large time steps
and vehicle group sizes. However, this is due to the fact that there are no intermediate
results to plot for example around -5 km. This effect is also visible in the free flow and
queue test case, though less pronounced.
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Continued Figure 8.10 Density profiles of queue test case at t = 600 s, computed with
different numerical methods and different resolutions.
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Figure 8.11 Density profiles obtained with different numerical methods and CFL-
numbers. The upwind explicit method is omitted from the profiles with large CFL-

number (W = 1.5), Figures (b), (d) and (f)) because it is very unstable and would
obscure the figures.
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Figure 8.13 Accuracy of numerical methods measured with different measures, and

their change over time.



186 Multi-class continuum traffic flow models: Analysis and simulation methods

congestion test case show a lot of diffusion if the minimum supply demand method
or the upwind method with implicit time stepping is applied: the high density region
does not have sharp boundaries as the other methods, but the solution is smooth. The
queue test case results show that with these methods the queue dissolves more quickly
than in the exact solution. The diffusion and phase error are analyzed in more detail
below. Most of the analysis is done for one specific time instant # = 600 s, which is also
indicated in the figures. At that moment, the exact solution can be computed relatively
easily, while errors can already be observed in the numerical solution.

Figure 8.10 shows density profiles of the exact and numerical solution at time ¢t = 600
s. The density is computed with different numerical methods and resolutions. The
figures show that at a high resolution the solution with the minimum supply demand
method and the upwind method converges to the exact solution. The numerical solu-
tion obtained with the variational method, does not converge to the exact solution.
However, it converges to the exact solution of the same initial value problem with the
piecewise linear fundamental relation.

Figure 8.11 shows density profiles of the exact and numerical solution at time ¢t = 600
s. The density is computed with different numerical methods and CFL-numbers. The
figure shows reasonable solutions if the upwind method with implicit time stepping
is applied or if the CFL condition is satisfied exactly (4 = 1). However, if 4 = 1.5
the solutions obtained with the upwind method with explicit time stepping show insta-
bilities. This also occurs in the free flow test case with the minimum supply demand
method. Other tests (not shown here) show that for the other test cases the minimum
supply demand method is also unstable if larger CFL-numbers are applied. The lack
of instability with relatively small CFL-numbers (but above one) may be explained
by the following. If the CFL condition is satisfied, characteristics can not cross more
than one grid cell boundary within one time step. If the CFL-number is not satisfied,
characteristics may cross more than one cell boundary, but only if their velocity is
‘high enough’. If the CFL-number is relatively small (e.g., u = 1.5), the character-
istics need a relatively high velocity do so, i.e. characteristic velocity ¢ > (2/3)vmax-
This does not, or not sufficiently, occur in the congestion and the queue test case and
the minimum supply demand method does not show instabilities.

Figure 8.11 furthermore shows the centroids of the density profiles of the exact and
numerical solution computed with = 1. It shows that the phase error (i.e. the dis-
tance between the exact centroid and the numerically computed centroid in horizontal
direction) is small, except for the variational method applied to the free flow test case.
In the free flow test case, the diffusion error (the distance between the centroids in ver-
tical direction) is small for all numerical methods except for the variational method. In
both other test cases the diffusion error of the minimum supply demand method and
the upwind method with implicit time stepping is relatively large. The phase error and
diffusion error of the minimum supply demand method and both upwind methods are
studied in more detail in the following. The accuracy measures based on the centroids
of the solution, give rather extreme results. This is due to the nature of the solution
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with discontinuities instead of smooth transitions in the free flow regime. In turn, these
are due to the fact that the variational method uses a piecewise linear fundamental re-
lation that is only an approximation of the fundamental relations in the other methods.
Therefore, we will not further study the accuracy of this method.

Figure 8.12 shows the phase error and diffusion error for different numerical methods
and their dependence on the CFL-number. For the minimum supply demand method
and the upwind method with explicit time stepping only the results with u < 1 are
shown because if the CFL condition is not satisfied, the method becomes unstable.
Other test results (not shown here) show that the errors of the upwind method with im-
plicit time stepping increase almost linearly as function of the CFL-number for CFL-
numbers above u = 1.5, at least until u = 4. The phase errors in the congestion test
case are negligibly small: less than a quarter of a grid cell (Ax/2 = 50 m) or the total
length of 2 vehicle groups in congestion (2sjamAn = 25 m). The apparent oscillations
in the phase error in the congestion test case and the queue test case can also be ex-
plained by considering the length of a vehicle group. This length is about the same
size as the size of the oscillations. Therefore, we expect that the oscillations are due to
the averaging of the position over multiple vehicle in the procedure to find the phase
error. In the free flow test case the diffusion is much smaller than in the other two test
cases. Those results with very small errors will not be discussed further. All other
results (i.e. phase error in free flow and queue test case and diffusion error in free
flow and congestion test case) show that the errors of both upwind methods are similar
for small CFL-numbers. They increase with the CFL-number for the upwind method
with implicit time stepping, they decrease in the methods with explicit time stepping.
The diffusion error is even zero in the upwind method with explicit time stepping and

u=1.

Figure 8.13 shows the phase error and diffusion error for different numerical methods
and how they evolve over time, from ¢t = 0 to t = 600 s. Again the phase error in the
congestion test case and the diffusion error in the free flow test case are negligibly small
and therefore not discussed further. The upwind method with implicit time stepping
has the largest errors, but it is similar to the errors of the minimum supply demand
method, except for the phase error in the queue test case. Explicit time stepping has
the smallest error. It is much smaller than that of the other methods and it increases
only slowly, except for the phase error in the free flow test case. The diffusion error of
the other methods increases quickly in the first part of the simulation, but the increase
rate decreases over time.

8.6.2 Discussion

The test results confirm that the minimum supply demand method and both upwind
methods are converging if the CFL condition is satisfied: p < 1. The variational
method with 4 = 1 converges to the solution of the same problem with piecewise
linear fundamental relation. The upwind method with explicit time stepping and p = 1
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gives the most accurate simulation results, both in terms of phase error as diffusion
error. The phase error increases (almost) linearly over time. From this we conclude
that the error in characteristic velocity is constant. The accuracy of the minimum sup-
ply demand method and the upwind method with explicit time stepping is lower if the
CFL-number is lower. This implies that decreasing the time step size At without de-
creasing the grid cell size Ax or the vehicle groups size An, leads to a lower accuracy.
It depends on the numerical method and on the actual traffic state how large this effect
is. However, even for very small CFL-numbers (¢t = 0.05), the upwind method with
explicit time stepping is more accurate than the other methods. Therefore, we conclude
that this method is preferred if the CFL condition is satisfied. Only if, for some reason,
the CFL condition can not be satisfied, the upwind method with implicit time stepping
is preferred. This method is less accurate if 4 < 1. However, it remains stable even if
u>1.

8.7 Conclusions

In this chapter, we introduced the upwind method applied to the mixed-class kinematic
wave model in Lagrangian formulation. This method is simpler than the minimum
supply demand method commonly applied to the kinematic wave model in Eulerian
formulation. This is because switching between upwind and downwind discretization
is unnecessary in the Lagrangian formulation. Furthermore, we introduced an alterna-
tive time stepping method (implicit time stepping) which allows for larger time steps
and a numerical method based on variational theory.

We introduced two novel accuracy measures: diffusion and phase error. The new
accuracy measures take into account just that type of accuracy that is important in
traffic flow applications. The accuracy measures were applied to assess the accuracy
of the numerical methods. They can also be applied to assess the accuracy of a model
against empirical data. This allows for a more fair comparison of traffic flow models
than the currently usual approach of comparing models against empirical data using,
for example, the RMSE. However, for this application it may be necessary to develop
the measures further. For example, it would be useful to automatically match a high
density region in data with the corresponding high density region in the simulation.

Our test results show that the upwind method with explicit time stepping is the most
accurate method. All methods introduce phase errors and diffusion errors. The vari-
ational method leads to stepwise changes in the velocity in free flow due to the change
in the fundamental relation to a piecewise linear fundamental relation. The accuracy in
terms of phase error and diffusion is much worse than of the other methods. Therefore,
we do not discuss this method further,

The requirement of small time steps is the main drawback of the upwind method with
explicit time stepping and also of the minimum supply demand method. This is be-
cause the CFL-condition needs to be satisfied and it results in higher computing times.
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If an application demands for very low computing times, the upwind method with im-
plicit time stepping is an alternative. With this method, larger time steps can be taken
which results in lower computing times.

Regarding the choice of a numerical method we conclude the following:

1. Inaccuracies consist of phase error and diffusion error, the amount of inaccuracy
depends on traffic state, numerical method and CFL-number.

2. The upwind method with explicit time stepping gives the most accurate results.
3. If an explicit time stepping method is used:

(a) u =1 gives the most accurate results. If 4 =1 is impossible (e.g., due to the
layout of the road), choose tt < 1 because u > 1 will lead to instabilities.

(b) Only decreasing the time step size (i.e. decreasing the CFL-number) will
lead to less accurate simulation results.

4. If an implicit time stepping method is used, larger time steps may be taken (even
with u > 1), but the larger the time step, the less accurate the simulation result.

5. Decreasing both time step size and grid cell size or vehicle group size such that
the CFL-number does not change, will lead to more accurate simulation results.

We have only compared the accuracy of the methods using simulations. It would be
interesting to see whether the computation times are influenced by the methods as we
expect (e.g., lower computation times with the upwind method than with the mini-
mum supply demand method). Future research includes an extension of the variational
method with piecewise linear fundamental relation consisting of more than three parts.
It will increase the number of velocity steps in free flow and therefore increase the
accuracy. The accuracy of the other numerical methods can be studied further by ap-
plying other, more realistic, test cases. In such cases, it may not be possible to obtain
the exact solution. The results show that the solution with the upwind method and
explicit time stepping and high resolution is very accurate. Therefore, that solution
can be applied as a reference solution. Furthermore, phase error and diffusion error
can also be based on velocity and spacing instead of density. This will lead to bet-
ter accuracy estimates in test cases with a small low-density region that needs to be
traced. Finally, the accuracy measures introduced here can also be applied to assess
traffic flow models. In that case they are used to compare measurements with model
results. That way, models are assessed on criteria that are more relevant in traffic flow
modeling than simply the RMSE.

In the next two chapters the upwind method with explicit time stepping is extended to
multi-class models (in particular Fastlane) and to networks including nonhomogeneous
roads, on ramps, off ramps etc.






Chapter 9

Numerical methods for multi-class
models

In the previous chapter we introduced numerical methods for mixed-class kinematic
wave models. In this chapter we extend the methods to multi-class kinematic wave
models. We limit our scope to explicit time stepping methods, because of two rea-
sons. The explicit methods are easiest to extend to multi-class models. Furthermore,
based on the results from the previous chapter we expect accurate simulations can be
done with these methods. A multi-class minimum supply demand method was intro-
duced by Chanut & Buisson (2003). However, they do not include dynamic pce-values.
Furthermore, Ngoduy (2010) introduces an alternative numerical method which uses
eigenvalues. However, it is difficult to approximate the eigenvalues accurately if there
are many (more than 3 or 4) vehicle classes.

We introduce and compare a minimum supply demand method and an upwind method
for the generalized multi-class kinematic wave model, with dynamic pce-values. The
minimum supply demand method is based on the Eulerian formulation of the model,
the upwind method on its Lagrangian formulation. We show that the (dis)advantages
of both methods are similar to the (dis)advantages of their mixed-class counterparts.

The outline of this chapter is as follows. In Section 9.1 we introduce a minimum supply
demand method for the generalized multi-class kinematic wave model. In Section 9.2
the upwind method is introduced. In Section 9.3 we compare both methods using a
simple test problem. We conclude this chapter with a short discussion in Section 9.4.

9.1 Multi-class minimum supply demand method

A minimum supply demand method is developed for the generic multi-class model.
Each time step k the following steps are taken to calculate the new state in each grid
cell j.
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Preparation Determine flow over grid cell boundary q’; o by taking minimum of

(]

supply and demand.

Actual time step Determine new class-specific densities pblfjl by adding inflow and
subtracting outflow.

New values other variables Apply the effective density function, the fundamental re-

lation and the pce function to determine the new pce-values nk}q class-specific

k+1

flow qy, and effective flow qk“.

The steps are discussed in more detail in the rest of this section. Figure 9.1 shows sim-
ulation results of a simple test problem. The test problem and the results are discussed
in more detail in Section 9.3.

9.1.1 Preparation

In the preparation part of the time step the flow over the cell boundaries is determined
using the class-specific demand and supply, all in vehicles per time unit. The total
demand and supply is calculated equivalently to the mixed-class demand (8.1c) and

supply (8.1d):

. q’J‘. (free flow) . qerit  (free flow)
6; = and o} = 9.1)
geit (congestion) q; (congestion)
with the qu‘- effective flow in pce vehicles per time unit. Therefore, also the unit of
the demand and supply is pce vehicles per time unit. The total supply and demand is
divided among the vehicle classes using the class-specific shares A,,:
k ok

”u,J s

L, nu,J oy
ko= n“’f Pk_u,j if V& = 0 for all classes u (9.2b)
Pj
nlljvqul’i?J
9

if p} ;= 0 for all classes u (9.2a)

otherwise (9.2¢)

\

This implies that in most cases (9.2¢) the share is simply the fraction of the effective
flow taken up by class u. However, if the effective flow is zero (and thus pul =0 for
all classes u or v = 0 for all classes u), all shares A, would be zero and ¥, A, #
1. Therefore, if the effective flow is zero, the share is a fraction determined by the
velocities (9.2a) or densities (9.2b). Using the shares, the total supply and demand is
distributed among the vehicle classes as follows:

8ki=2AL;80 and of =AML, o} 9.3)



9 Numerical methods for multi-class models 193

The unit of class-specific demand and supply is pce-vehicles per time unit. We note
that the share in the previous cell j — 1 is used to calculate the class-specific supply
in cell j. This is because the total supply needs to be distributed over all vehicles that
want to cross the cell boundary between cell j — 1 and cell j, and not over the vehicles
that are already in cell j. Finally, for each cell, the class-specific flow from the previous
cell i — 1 to cell i is determined as the minimum of the supply and the demand:

1
k _ : k k
Gy j1 = Ekj min (GMJ, 5u7j_1> (9.4)

9.1.2 Actual time step

The new class-specific density is determined in the actual time step, similar to the new
density in the mixed-class minimum supply demand method (8.1b):

At
k+1_ ko Bk ok

pu,j _pu.]+ A)C (qu7‘]_% qum]_‘—%) (9'5)
We note that with this approach, the effective flow (in pce equivalent vehicles per time
unit) is maximized. Therefore, the numerical method finds the entropy solution of the
continuous model.

9.1.3 Computation of variable values

In the last part of the time step, the values of other variables such as the pce-values
and the class-specific and effective flow are calculated. For example, for Fastlane, the
effective density function (4.51), the fundamental relation (4.49) and the pce function
(4.11) are applied. This part of the time step shows the importance of the reformulation
of the effective density function as introduced in Section 4.5. It is used to determine
the new pce-value ni i without using a numerical approximation based on the implicit
formulation in Section 4.3.

We note that the method does not guarantee that the new effective density does not ex-
ceed jam density. This is because the supply and demand are based on the share, which
is in turn based on the old pce-values. However, during the time step, the densities and
thus also the pce-values change. With the new pce-values, the effective density may
in fact exceed jam density. A simple solution to this problem is to set the effective
density to jam density (p = pjam), Whenever it exceeds jam density. The class-specific
densities p, are not changed and thus vehicles are conserved.

Finally, in the last part of the time step, the class-specific and the effective flow are
determined by:

Clﬁ,j = Vﬁ,jpblf,j and (II;' = an,lf,jqft,j (9.6)
u
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9.2 Multi-class upwind method

An upwind method is developed for the generic multi-class model. In each time step k
the following steps are taken to calculate the new state for each vehicle group i:

and spacing ratio (s /s,)" !

Actual time step Determine new spacing of class 1 slfgl

of all other classes u.

New values other variables Determine the new spacing of all classes u # 1 and the

class-specific densities. Apply the effective density function and the fundamen-
k+1

ui

New positions Calculate the new positions of all vehicle groups.

tal relation to determine the new class-specific velocity v

The steps are discussed in detail in the rest of this section. Figure 9.1 shows simulation
results of a simple test problem. The test problem and the results are discussed in more
detail in Section 9.3.

9.2.1 Actual time step

We recall from Chapter 6 the conservation equations in the Lagrangian coordinate
system (6.28) and (6.34):

8s1 8v1

o Tan =0 O
0 S1 d Vi —Vu
R o = 0 forall classes u # 1 (9.7b)
ot \ s, on Su

An upwind method is applied to discretize the equations. Therefore, vehicles of class
1 are grouped into groups of An vehicles. The discretization of the conservation equa-
tion for class 1 (9.7a) is similar to the discretization of the mixed-class conservation
equation (8.5):

st =51+ 2—; <v’f7,~,1 — v’f’i> (9.8a)
with k the time step index, Ar the time step size, i the vehicle groups index (only
referring to vehicles of class 1) and An the vehicle group size: the number of vehicles
of class 1 per group. We note that the number of vehicles of other classes in one
group may vary, i.e. the fraction plf’i /Y. pl’j’i depends both on the vehicle group i and
the time step k. The discretization of (9.7b) uses the same indices and time step and
vehicle group sizes and is as follows:

k+1 k koo ok Kok
s 51 At (Viin 7 Vui-1 Vii T Vi
1)Y= (t) + 2 k - (9.8b)
Su/ i Su/ i An Sui—1 Sui
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9.2.2 New value of other variables

Once s"! and (s, /su)i-chl are known, the new spacing of the other classes u can be
computed:
Gkt
k+-1 1,i
sy = (9.9)
i k1
(s1/5u);

The new densities of each class u follows directly:

puit=1/st! (9.10)
Subsequently, the effective density function is applied to find the new effective den-
sity. Finally, the new class-specific velocities follow from the multi-class fundamental
relation.

9.2.3 New positions

Equivalently to the derivation of (8.11), the discretized conservation equation of class
1 (9.8a) can be simplified to:

A = A (9.11)

This is useful because in most applications the location of each vehicle group is needed,
and not only its (class-specific) spacing, density or velocity.

9.2.4 Discussion

Just as in the mixed-class case, the upwind method applied in Lagrangian coordinates
is much simpler than the minimum supply demand method applied in Eulerian coordi-
nates. Because of the lack of switching between upwind and downwind discretization
the upwind method is computationally less demanding. In the next section we compare
the accuracy of the multi-class minimum supply demand and upwind method based on
simulation results.

9.3 Accuracy of numerical methods

We compare the accuracy of the multi-class minimum supply demand and upwind
method with a simple test case, similar to the queue test case in Chapter 8. The only
difference is that we now apply Fastlane with multiple vehicle classes.
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Table 9.1 Model parameters.

Fundamental relation parameters

maximum velocity class 1 V1,max 33.3 m/s = 120 km/h
maximum velocity class 2 V2 max 25 m/s = 90 km/h
critical velocity Verit 20.8 m/s = 75km/h
critical density Perit 0.033 veh/m = 33 veh/km
jam density Pjam 0.2 veh/m = 200 veh/km
gross vehicle length class 1 Ly 1/Pjam S5m
gross vehicle length class 2 Ly 18 m
minimum time headway class 1 T Is
minimum time headway class 2 b 1.5s
(resulting congestion wave parameter w 4.17 m/s = 15 km/h)

9.3.1 Test setup

The test setup is as follows. There are two-classes with different maximum velocity
Vu,max» gross vehicle length L, and minimum time headway T,,. Initially, the fraction
of vehicles of class 2 is the same everywhere and equal to Yy = p,/(p; + p2) = 0.1.
The test case represents a traffic light turning green. This leads to the following initial
conditions:

0 ifx>0
p(x,0) = Pjam if 0 < x < Lgueue (9.12a)
Pupstream ifx < Lqueue
p2(x,0) = y(p1(x,0) +p2(x,0)) (9.12b)

with the initial length of the jam density region L = 2000 m and the initial upstream
effective density Pupstream = % Perit-  The multi-class Smulders fundamental relation
(4.49) is applied, with the same parameters as previously used in Fastlane, see Chapter
5. All model parameters are given in Table 9.1. The same numerical parameters as in
the base case in Chapter 8 are applied. That is, the grid cell size Ax = 100 m, vehicle
group size An = 2.5 vehicles and time step size At = 3 s. Therefore, the CFL-condition
is satisfied exactly (u = 1).

We do not compute the analytical solution of the test problem. However, we use the
solution obtained with the upwind method with a high resolution (An = 0.42 vehicles,
At =0.5 s, u = 1) as a reference solution. We have shown in the previous chapter
that with a high resolution the accuracy of this solution is high and therefore it can be
applied as a reference solution.

9.3.2 Simulation results

The numerical solutions of the test case are shown in Figure 9.1 and 9.2. Figure 9.1
shows the effective density, but also the class-specific velocities and the fraction of
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Figure 9.1 Simulation results with multi-class minimum supply demand method and
multi-class upwind method.
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Continued Figure 9.1 Simulation results with multi-class minimum supply demand
method and multi-class upwind method.
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vehicles of class 2. The results with the minimum supply demand method are more
diffusive than the results with the upwind method. Just as in the mixed-class case,
congestion, and especially the queue, spills back further upstream with the upwind
method than with the minimum supply demand method. The phase error and diffusion
error and their evolution over time are shown in Figure 9.2. The errors are largest
about halfway the simulation. On one hand, the errors have had some time to develop
themselves. On the other hand, the queue is still relatively long. The figure shows that
both the accuracy of the upwind method is higher than that of the minimum supply
demand method. However, after the queue has dissolved (at around ¢t = 950 s) the
accuracy of both methods is similar. Except for the size, there is not much difference
between the error in the effective density and the class-specific densities of class 1 and
2.

9.4 Conclusions

The minimum supply demand method based on the Eulerian formulation of the kine-
matic wave model and the upwind method based on its Lagrangian formulation are
extended to multi-class models. Similar conclusions as for the mixed-class model
and numerical methods hold. The upwind method is computationally less demanding
because there is no switching between downwind and upwind discretization. The com-
putational results with the upwind method are more accurate: both the phase error and
diffusion error are smaller.

Future research includes a more detailed study of the accuracy of the upwind method
for the generalized multi-class kinematic wave model. Therefore, more test cases
should be studied with a larger variety of characteristic waves, for example by in-
cluding other traffic compositions. The numerical solution may be compared with the
analytical solution, instead of with a reference solution that is also obtained numer-
ically. Furthermore, the accuracy of the method applied to models with more than
two-classes can be studied, as well as the accuracy when the method is applied to other
models than the Fastlane model. The method may also be applied to compare the
simulation results of multi-class kinematic wave models. The computational time of
the upwind method can be reduced by combining it with implicit time stepping or the
variational method. Finally, an alternative numerical method based on the other for-
mulation of the conservation equation in Lagrangian coordinates (6.29) (Yuan et al.,
2011; Yuan, 2013) can be studied further. This method is expected to be more accurate
if there are only few vehicles of class 1. The accuracy can be evaluated in more detail
using the same methods as presented in this chapter.

We conclude that the upwind method based on the Lagrangian coordinate formulation
of the generalized multi-class model leads to more efficient simulations on homoge-
neous roads than the minimum supply demand method. In the next chapter we extend
the upwind method to inhomogeneous roads and networks.



Chapter 10

Networks

The final step in the development of our traffic flow model and accompanying numeri-
cal method is the introduction of nodes. Previously, we only considered long homoge-
neous roads. In this chapter we discuss how to deal with inflow and outflow boundaries
and inhomogeneities. Inhomogeneities are, for example, changes in the fundamental
relation due to changes in the number of lanes or speed limit, off ramps (diverges) and
on ramps (merges). In our model links are homogenous road stretches connected by
nodes. Boundaries and inhomogeneities are located at nodes. Therefore, we refer to
models for inflow and outflow boundaries, inhomogeneities, merges and diverges as
node models.

Most discussions on boundaries and inhomogeneities in traffic flow models assume
that the model is formulated in Eulerian coordinates, e.g., (Newell, 1993b; Daganzo,
1995a; Jin & Zhang, 2003; Lebacque, 1996; Helbing & Treiber, 1999; Tampere et al.,
2011; Flotterod & Rohde, 2011). Most articles discuss both a continuous node model
and its discretization based on the minimum supply demand method. In fact, also
the continuous node models use concepts from the minimum supply demand method.
Tampere et al. (2011) propose a generic node model for nodes with multiple incoming
and outgoing links, see Figure 10.1(a). Their article includes simple, but consistent
and realistic, models for merges with two incoming links (Figure 10.1(d)) and diverges
with two outgoing links (Figure 10.1(c)). They discuss how to include realistic rules for
overtaking at diverges and priority at merges. Furthermore, they propose a method to
include capacity constraints of the node itself. We shortly review the model and built on
it for our multi-class node model and node model in Lagrangian formulation. Because
the main application of our model is simulation of motorways, we restrict ourselves to
nodes that are present on this type of roads. It implies that we only consider nodes with
at most three links (one-to-one, one to two and two to one nodes). Furthermore, we do
not consider capacity constraints of the node itself. The methods may be extended to
intersection models for other nodes with more links or restrictions on the capacity of
the node itself.

Ngoduy (2010) proposes a node model for a multi-class kinematic wave model. How-
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ever, he assumes that vehicles are always able to overtake, for example to take a dif-
ferent outgoing link. Furthermore, his merge model violates the invariance principle,
which implies that traffic flow over the node depends heavily on the flows over the
incoming links. Lebacque & Khoshyaran (2005) have shown that this is an unreason-
able assumption. As an example, consider the case with low flows (in total below the
capacity of the outgoing link) from both incoming links. If the flow from one incoming
link is halved, the flow from the other incoming link to the outgoing link is also halved,
according to Ngoduy’s model.

The main challenge for node modelling in Lagrangian formulation is that nodes move
with respect to the coordinate system, which moves with the vehicles. Therefore, one
may develop node models similar to the ones that are used in microscopic models.
However, the continuous link model describes the ‘average’ vehicle behaviour. There-
fore, also the node model and its discretization should describe the average vehicle
behaviour and thus we do not resort to microscopic node models describing the be-
havior of individual vehicles. We consider macroscopic node models and introduce
node models in Lagrangian formulation in analogy to those in Eulerian formulation.
We develop such models and show that they are, in most cases as accurate as node
models in Eulerian formulation. It even turns out that part of the node model and its
discretization is simpler in Lagrangian than in Eulerian formulation.

The outline of this chapter is as follows. In Section 10.1 we discuss mixed-class node
models in Eulerian formulation and the minimum supply demand method for these
models, based on (Tampere et al., 2011). We extend the method to multi-class models
in Section 10.2. In Section 10.3 we discuss mixed-class node models in Lagrangian
formulation and in Section 10.4 the discretization of Lagrangian node models. The
methods are applied in simulations in Section 10.5. Furthermore, in that section the
accuracy of the minimum supply demand method for nodes and the upwind method for
nodes are compared. Finally, we conclude with Section 10.6. It includes a few remarks
on extensions of the mixed-class upwind method for nodes to multi-class models.

10.1 Node model and minimum supply demand method

Nodes have one or multiple incoming and one or multiple outgoing links, see Figure
10.1 for some examples. Our goal is to describe how, in a mixed-class kinematic wave
model, the flux over the node can be computed, given the traffic state at the incoming
and outgoing links. We will do this for different types of nodes, with one or two
incoming and one or two outgoing links. The results can be generalized to nodes with
more links, but this generalization is not in all cases straightforward.

Node models in Eulerian formulation use concepts from the minimum supply demand
method. The demand of the incoming links and the supply of the outgoing links is
computed. The flux over the node is the minimum of both, possibly corrected for some
complicating factors if there are multiple incoming or outgoing links. Therefore, we
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Figure 10.1 Different types of nodes. Only (b), (c) and (d) are discussed in detail in
this chapter.

skip the step of describing the continuous node model and immediately turn to the
discretized node model. Our goal is to present a method to calculate the flux from the
last cell of the incoming link(s) to the first cell of the outgoing link(s). The last cell
of an incoming link is denoted with a, the first cell of an outgoing link is denoted b.
Each time step k the demand at last cell of the incoming link 55 and the supply at the
first cell of the outgoing link o* is calculated. This is done similarly to the minimum
supply demand method for homogeneous roads (8.1c) and (8.1d):

k free flo
55 _ 9a and of — (anp)b ( W) (10.1)
(Qcap)a q; (congestion)

with gX the current flow in incoming cell a and q’g the current flow in the outgoing
cell b. (gcap)a and (gcap)p are their respective capacities. In most cases the flux (the
flow over the node during one time step) is not simply the minimum of the supply and
demand, because some other influences have to be taken into account. In the rest of
this section we discuss what influences the flux and how to calculate it.

10.1.1 Boundary conditions

At inflow and outflow nodes, boundary conditions are applied. We assume the flow at
the inflow boundary is known, either from measurements or for example from origin-
destination matrices. At the outflow boundary, we assume that either the flow is known,
or there is free flow downstream.

Imposing a flow boundary condition directly leads to an ill posed problem in some
situations (Helbing & Treiber, 1999). In this context ill posed means that there is no
solution to the boundary value problem that both satisfies the boundary condition and
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solves the conservation of vehicles equations within the computational domain. For
example, if the density is very high near the inflow boundary, the problem becomes
ill posed if the boundary condition prescribes a flow above the actual flow just down-
stream of the boundary. Similar problems occur when imposing velocity or density
boundary conditions in this way. Furthermore, when prescribing both inflow and out-
flow, it may not be possible to guarantee conservation of vehicles.

Therefore, the minimum supply demand method is used in order to impose the bound-
ary condition flow whenever possible, but preventing the problem from becoming ill
posed. Additional cells (ghost cells) are added just upstream the inflow boundary and
just downstream the outflow boundary. The boundary is then treated as a one-to-one
node, see Figure 10.1(b). In the upstream ghost cell the demand is set equal to the
prescribed boundary flow. If there is a prescribed boundary flow at the downstream
boundary, the supply in the downstream ghost cell is set equal to this flow. If it is as-
sumed that there is free flow downstream, the supply in the ghost cell is set to any value
equal to or above the capacity of the last link. Finally, the node flux is the minimum of
the supply in the cell downstream of the node and the demand in the cell upstream of
the node.

10.1.2 Spatio-temporal changes in the fundamental relation

At a node the fundamental relation can change, for example due to a change in road
layout such as a reduction of the number of lanes. Furthermore, it can change tempo-
rarily, for example due to weather or an accident. This can be included in the model
by making the fundamental relation time and space-dependent:

q(p) =q(p,t,x) (10.2)

The grid cell boundaries and the time steps are aligned with, respectively, the nodes
and the moments at which the fundamental relation changes. The node is then treated
as a one-to-one node, see Figure 10.1(b). The flow is not only density-dependent, but
also depends on the location (grid cell j) and the time (time step k):

qs = q(p},kAt, jAx) (10.3)

Subsequently, downstream supply and upstream demand are calculated using (10.1)
and the node flux is the minimum of both.

10.1.3 Diverges

Diverges are nodes with one incoming and multiple outgoing links, see Figure 10.1(c).
A simple example is an off ramp. At a diverge turn fractions are assumed to be known.
The turn fraction ¢, to outgoing link b is the fraction of all vehicles arriving at the node
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that want to go to link b. Turn fractions are, for example, derived from routes or origin
destination matrices, they can be measured directly, or they are based on the capacity
of the outgoing links. Turn fractions may be time-dependent but for readability we
omit the dependence on time in the equations.

In the diverge node model, the turn fractions are used to distribute the demand over the
outgoing links. Here we restrict ourselves to two outgoing links, see Figure 10.1(c).
The grid cell boundaries are aligned with the node. The flux from the last cell of
the incoming link to the first cell of both outgoing links is calculated. The procedure
proposed here is also discussed in e.g., (Tampere et al., 2011). The total demand 6 and
the supplies of the outgoing cells 0}, and 0}, are calculated using (10.1). We assume
that vehicles exit in a first in first out (FIFO) sequence and vehicles may be delayed by
their leaders irrespective of their destination. Therefore, if the inflow into one outgoing
cell is constrained by the available supply, also the inflow into the other outgoing cell is
constrained. Consequently, the flux over the node is not only restricted by the demand
and supply, it is also restricted by the turn fractions:

Jor =0 f <0y, fo, = f < Opy,  f= 1, + b, <0 (10.4)

with f the total flux and f, and f}, the flux to cell by and b;, respectively. Combining
(10.4) into one equation yields the flux to link by:

Gbl sz

fb] = ab]f = ab] min (_7 9 a) (105)

Op, Oy,

The flux to link b, can be found similarly and both fluxes are rewritten:

fbl = min (Bbp Bbz? 1) ab] 5617 fb2 = min (Bblu Bbz: 1) abz 60 (1063)

with reduction factors:

sz

By, = 23, (10.6b)

By, =

N ab15a7

To summarize, the diverge node model consists of (10.6) together with the demand and
supply as defined in (10.1).

10.1.4 Merges

Merges are nodes with multiple incoming and one outgoing link, see Figure 10.1(d). A
simple example is an on ramp. In the case of a merge some extra modeling decisions
need to be made. They are related to which of the incoming roads gets priority. Cassidy
& Ahn (2005); Bar-Gera & Ahn (2010) show that at a merge, drivers give priority
following some fixed merge ratio. The merge ratio might be time-dependent (e.g.,
high in the morning peak, low in the afternoon peak), but does not depend on the
actual flow. The fixed merge ratio can result from specific traffic regulations imposed
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(priority rules), which are sometimes enforced by geometrical measures (e.g., lane
markings). Unless such local priority rules are explicitly known, there are different
methods for estimating priority ratios. They are for example based on the capacity of
the incoming links or directly on flow measurements. Since we focus on an appropriate
macroscopic representation and not on the underlying microscopic drive behavior, we
assume the merge priority ratios to be known and we describe how they can be used
in merge modeling. We summarize the discrete model in Eulerian coordinates that
was presented before in slightly different versions by several authors such as Daganzo
(1995a); Lebacque (1996, 2005); Tampere et al. (2011).

We only discuss how to model a merge with two incoming links, see Figure 10.1(d).
Again, grid cell boundaries are aligned with the node. The flux from the last cell of
both incoming links to the first cell of the outgoing link is calculated. Demand and
supply are calculated using (10.1). The merge priority ratio for link a; is 7y, € [0, 1].
A high merge priority ratio means that vehicles from incoming link a; usually get
priority over vehicles from link 2. The merge priority ratio for link a; is ¥, = 1 —7,,.
The merge priority ratio is used to distribute the available supply of link 3 over the
incoming links. This may lead to an underutilization of the outgoing links. This is
for example the case if the demand from incoming link a; is satisfied but the demand
from incoming link a; is not, while furthermore the supply is not fully utilized either.
In such a case, the remaining supply is assigned to the incoming link of which the
demand is not satisfied, a; in the example. Tampere et al. (2011) show that this leads
to the following fluxes over the merge node:

fa, = min (ﬁa16b7 6(11)7 fa, = min (ﬁa26b7 5(12) (10.7a)

with reduction factors:

B4, = max (%117 1— %) ., Pa, = max (Ya27 (1 — %>) (10.7b)

Op Op

To summarize, the merge node model consists of (10.7) together with the demand and
supply as defined in (10.1).

10.2 Multi-class node models

We extend the node models from the previous section to multi-class node models. For
application in the minimum supply demand method for nodes, only the last cell of the
incoming link(s) and the first cell of the outgoing link(s) are used in this procedure.
The methods proposed here can be applied to Fastlane but also to any other multi-class
model that is contained in the generalized model in Chapter 5.
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10.2.1 One-to-one node

In the case of a one-to-one node (with e.g., a change in the fundamental relation or a
boundary node), the effective demand and supply are equal to the mixed-class demand
and supply (10.1). Subsequently, the class-specific demands, supplies and fluxes are
calculated as in the multi-class minimum supply demand method for homogeneous
roads, see Section 9.1.

10.2.2 Diverge node

In the case of a diverge, the turn fractions may be different for each vehicle class. The
effective total demand &, and effective cell specific supplies o,, and o}, are calcu-
lated as in the multi-class minimum supply demand method for homogeneous roads
(9.1). The effective demands and supplies are distributed over classes similar to the
distribution for a homogeneous road (9.3):

5u,a = }Lu,aém Oub, = Mi,aOpys  Oup, = )Lu,acbz (108)

with the share as in (9.2). Subsequently, the class-specific demand is distributed over
the outgoing cells using turn fractions, similar to the distribution for mixed-class:.

6u7b1 = amb] 614707 6M,b2 = au,bz 6147(1 (109)

with turn fraction @, the fraction of vehicles of class u that wants to go to link b;.
04 b, = a— O p, is the remaining fraction of vehicles of class u, they will go to link
by. We now calculate the class flux to link »; without assuming FIFO:

(04 O,
fipy = ——min(8upy, Cupy) = —L min <5u, ”’b1> (10.10)

u,a Nu,a Oy b,

The next step is to introduce FIFO for the different directions. This implies that
vehicles can not overtake a vehicle of the same class in order to go to a different
outgoing link (just as in the mixed-class node model). However, vehicles can overtake
vehicles of other classes, which is a reasonable assumption if velocities are unequal.
The class-specific flux to cell by is similar to the mixed-class flux (10.5):

Qup, . Oub, Oupb
fupy = ———+min (su, e (10.11)
u,a Ouby O by

The class-specific flux to cell b, can be found similarly and both fluxes are rewritten:

Qubr s (10.12)

. O .
fu7b1 = min (ﬁu,bp Bu,bza 1) %SLH fu,bz = min (ﬁmbla ﬁu,bza 1)

u,a u,a
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with reduction factors:

Oy by Oy by
= : = : 10.13
ﬁ“7b1 au,bl 611 , ﬁu7b2 au,bz 6M ( )

In some cases it may be an unreasonable assumption the class-specific flows are un-
constrained by the class-specific flows of other classes. This is for example the case if
velocity differences are negligible and there is little possibility to overtake. In such a
case the method may be more accurate if FIFO for the different classes is also included
in the node model by introducing more reduction factors.

10.2.3 Merge node

The node model for a multi-class merge is relatively straightforward. First, the ef-
fective fluxes f,, and f,, from cell a; and cell ay, respectively, to the outgoing cell
are calculated just as in the mixed-class case (10.7a), (10.7b). The effective fluxes are
then distributed over the classes using the shares as in the multi-class minimum supply
demand method for homogeneous roads (9.2):

fu,al = )Lumfap fu,az = u,azfaz (10.14)

We note that this model uses the assumption that the merge priority rules are equal for
all classes. It could be studied further whether this is a reasonable assumption.

10.3 Nodes in the Lagrangian formulation

We introduce a continuous node model in Lagrangian formulation. It uses sinks and
sources. It is found that the continuous model is not suitable to discretize directly.
Therefore, in the next section, we propose an alternative discretization of the Lagrang-
ian node model.

10.3.1 Sink and source terms

Sinks and sources form the basis of the Lagrangian node model. We derive a conserva-
tion equation with sinks and sources in the Lagrangian coordinate system. Therefore,
we first introduce its Eulerian formulation which is easier to understand intuitively.
The conservation of vehicles equation in Eulerian formulation is rewritten to include a
sink/source term:

L (10.15)
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The term g(z,x) = gsource (f,%) — &sink (t,x) denotes the net time and space-dependent
inflow in vehicles per second and per meter. However, we assume that the source is
located at a fixed point in space. That is, the length of the ramp is not taken into account
but it is set to zero. This is consistent with the node models in the previous sections.
Assuming an infinite long road with a ramp or boundary at xpq. the source g(¢,x) can
now be written as:

g(t,x) = Qinﬂow(tvxnode)h(x) (10.16)

with Ginfiow (7, Xnode) the inflow from the ramp or boundary in vehicles per second. At a
merge or inflow boundary, there is a net source and gjngow > 0, at a diverge or outflow
boundary, there is a net sink and gjpow < 0. In (10.16), & (with unit m~1) can be any
function with [~ h(x)dx = 1. For example, in the following we use the delta-Dirac

function which can loosely be thought of as:

0 forx+#0,
oo forx =0,

h(x) = 8(x) = { with / S()de=1.  (10.17)
X=—o0

For a rigorous definition of the delta-Dirac function we refer to any calculus or analysis

textbook. Alternatively, if one wants to take into account the physical length of the on-

ramp h(x) can for example be defined as a block function.

10.3.2 Sink and source terms in Lagrangian formulation

We derive the Lagrangian conservation equation with source term in a way similar to
the derivation of the Lagrangian conservation equation in Section 6.1. An alternative
graphical derivation is proposed in the next subsection. The graphical derivation is
more intuitive, but mathematically less rigorous. In the derivation we apply the same
definitions as in Section 6.1. We recall the definition of spacing:

1
§s=— (10.18)
p
the Lagrangian time derivative:
D 0 0
—= = — 10.19
Dt Ot + v&x ( )
and the spacing expressed as partial derivative:
0
=2 (10.20)
on

Substituting the definition of spacing (10.18) into the Eulerian conservation equation
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with source term (10.15) and applying the quotient rule gives:

0 [1 d (v lds 1/ dv s
5( )*a(‘>—g<”x> = ?E*‘(S@‘Va)—gw (102D

S S N

Multiplying both sides with s> and substituting the Lagrangian time derivative (10.19)
gives:
d d d
a—j—sa—;—i—va—i =s%g(t,x) = — —s— =s5°g(t,x) (10.22)
Finally, (10.20) is substituted to find the Lagrangian conservation equation with source
term:
Ds dv ,

54—% =s°g(t,x) (10.23)

10.3.3 Graphical derivation and interpretation of sink and source
terms

We derive the Lagrangian conservation equation with source term (10.23) in an alter-
native, graphical way. The graphical derivation is similar to the graphical derivation of
the conservation equation in Lagrangian coordinates in Section 6.2.2.

In Figure 10.2 a (r,x) plane with some vehicle trajectories is shown. The box is a
platoon of vehicles followed over time Az. Initially (at £°!9), the platoon contains An°!d
vehicles. During the time interval Angoyrce Vehicles enter the road, e.g., via an on ramp.
Finally (at "), the platoon contains An"" = An®" ++ Angouree vehicles. The number of
vehicles that has entered the platoon is determined by the inflow rate per meter g(x,?),
the initial length of the platoon s°'YAn°'¢ and the duration Ar:

Angource = 8(x(n) ) I)SOldAnOIdAt (10.24)

We note that the source term g has the dimension (m-s)~!. This implies that the source
is not located at one point in space, but it has a certain length. The final length of the
platoon s"VAn"*Y = [Mts(1"Y n)dn is determined by its initial length sOldApeld —
[Mast g(£0ld 1) dn and the distances travelled by the first vehicle in the platoon vg At =

Nfirst
new

. . new
fttold s(t,ngrst) dr and the last vehicle in the platoon vy, Ar = ffold s(t, ) dr:
SV AR = sPlAROM e G AF — vy AT (10.25)
Substituting njase = Pfirst + Afgource and rearrangement gives:

s (AnOId + Ansource) = s°ldAnold + ViirstAf — ViastAl
= (Snew - SO]d)Anom + (Vlast - Vﬁrst)At = —5"" Angource (10.26)
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Figure 10.2 A control volume that follows a platoon of An vehicles over a time At. The
dark trajectories indicate vehicles entering the platoon, for example via an on ramp.
This graph is applied to derive the Lagrangian conservation equation with source term.

Substituting the source term (10.24) and dividing both sides by An®9Ar gives:

(snew o Sold)Anold + (Vlast . Vﬁrst)At — _snewg (x(n) 7 t)SOldAnOldAt
ghew __ old

S Viast — Vfirst 1d
= Y + Aol —s"Vs%(x(n),t) (10.27)

Finally, we take an infinitesimal control volume, i.e. we let both Any — 0 and Ar — O.
Furthermore, we apply the definition of the derivative (6.13) and find the Lagrangian
conservation equation with source term (10.23).

10.3.4 Discretization of sinks and sources in upwind method

The Lagrangian conservation equation with source term (10.23) may be discretized
using an upwind method similar to the approach for homogeneous roads (8.5) which
is introduced hereafter. In the next section we show that this approach has some disad-
vantages and we propose an alternative approach. Applying the upwind method gives:

+

At
Sf-(—H = Sif A (V;{fl - Vf) ‘i'At(S{'c)zg;{ (10.28)
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with ( fsource)f the inflow in (m-s)~! at the position of the i-th vehicle group at time
t = kAt. Using (10.24) the source term ( fsource)f-‘ can be approximated with:

k (Ansource)k
N 10.29
(gsource>, Al’lkAl‘Sf ( )
Combining (10.28) and (10.29) gives:
1 (] 4 @bk Atk 1
Sl- = ( + 0] )Sl' + An (Vl'fl Vl') ( 030)

with @ = (Angource)¥/An* which can be interpreted as a source fraction. It is the
relative growth of the number of vehicles in the vehicle group due to the source. For
example, at an on ramp the source fraction may be @ = 0.1 indicating that for each 10
vehicles passing the on ramp on the main road, 1 vehicle enters the road from the on
ramp. At an off ramp the source fraction may be @ = —0.2 indicating that for each 5
vehicles arriving at the off ramp, 1 takes the off ramp, the others continue on the main
road.

10.4 Discretization of nodes in upwind method

With the proposed discretization (10.30) of the conservation equation with source term,
two problems occur: 1) the number of vehicles in the vehicle group changes, and 2) if
the fundamental relation changes during a time step, for example because the number
of lanes changes as the group passes a ramp, this is not accounted for in the discret-
ization. The first issue is related to the first term on the right hand side of (10.30):
if the source fraction ®* = (Angource)¥/Ank is nonzero, the number of vehicles in the
group changes. This can be solved with a proper approach for vehicle discretization.
The second issue relates to time discretization. Our solution of both issues is discussed
below.

10.4.1 Vehicle discretization

With the simple upwind discretization proposed above (10.30), the number of vehicles
in one vehicle group changes at nodes. Therefore, the upwind method (8.5) is applied
on the homogeneous parts of the road, but we develop another discretization method
for the nodes. To keep the number of vehicles in one vehicle group constant there are
two options at nodes:

1. Collect all vehicle groups and form new groups. The new groups may include
vehicles from multiple vehicle groups on all incoming links. See Figure 10.3(a).

2. Keep the vehicle groups as they are. Only full vehicle groups travel over the
node. They may have to wait for other full vehicle groups. See Figure 10.3(b).
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/ /

(a) Merge with vehicle (b) Merge with vehicle (c) Change in funda- (d) Change in funda-
discretization with dis- discretization with only mental relation and time mental relation and

aggregation and reform-  full groups. discretization with in- time discretization with
ation of groups. termediate time steps. change at beginning of
time step.

Figure 10.3 Different types of vehicle and time discretization illustrated with traject-
ories over a merge node and a node with a change in the fundamental relation. Colors
and line styles indicate trajectories on different links (incoming and outgoing).

The first option is computationally intensive and more difficult to implement. However,
the results are expected to be more accurate. The inaccuracies of the second method
are expected to be small. In Section 10.5 we analyze the accuracy of this method.

10.4.2 Time discretization

Regarding the time discretization similar approaches can be taken. Here the issue is
that when a vehicle group reaches a node, this is usually not exactly at the beginning
of a time step. Therefore, it crosses the node during a time step. Which implies that
conditions for this vehicle groups and surrounding vehicle groups change during the
time step. For example, the fundamental relation changes or a new leading vehicle
group enters the road from an on ramp. Again there are two possible approaches:

1. Add an intermediate time step whenever a vehicle group reaches a node during a
time step. The conditions change from this intermediate time step onward. See
Figure 10.3(c).

2. Wait until the beginning of the new time step to apply new conditions. Old
conditions hold until the end of the time step in which the node is reached. See
Figure 10.3(d).

Again, the first option is computationally intensive and more difficult to implement.
The results are expected to be more accurate but the inaccuracies of the second method
are expected to be small. In Section 10.5 we analyze the accuracy of this method.

In the remaining of this section both for the vehicle discretization and the time dis-
cretization we apply the second (less accurate but simpler) approach. This implies that
only full vehicle groups cross nodes and they are not disaggregated. Any new condi-
tions only apply from the beginning of the time step after the node was crossed. We
discuss how to apply this to different types of nodes. Furthermore, in the next section
we apply the methods in simulations and show that the results are accurate enough.
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10.4.3 One-to-one node

We have already discussed how a node with a change in the fundamental relation can
be discretized: after a vehicle group has reached the node, the new conditions only
hold from the beginning of the next time step. Similarly, if there is a temporal change
in the fundamental relation, it only takes effect from the beginning of the next time
step. Therefore, the new position of a vehicle group is computed as follows:

= X Ank (10.31)

with vi.‘ = v(sé‘) the velocity obtained from the spacing sf.‘ and the fundamental relation
with parameters that hold at location x = xf at time t = Ark.

10.4.4 Inflow node

At an inflow boundary we assume the number of vehicles arriving at the inflow bound-
ary per time unit Siyqow is prescribed. In the discretization, the number of vehicles
waiting to enter the network Nyaiting 18 counted:

1 B} (k+1)At

Nwaiting = Nwaiting + . Finflow (Z)dl (10.32)
As soon as the cumulative inflow has reached the size of a vehicle group (i.e. if
N@;Lng > An), a vehicle group is formed at the inflow boundary and released at the
beginning of the next time step k+ 1. The distance between the position of the previ-
ously last group xf_l and the location of the inflow node x;,f0w 1S Used to calculate the
spacing: s = (x* | — Xinfiow)/An. In turn, the spacing is used to calculate the velocity
vi.‘ (using the fundamental relation) and the new position (using (10.31)). Furthermore,

i - - N5 R a8 R
the number of waiting vehicles is decreased: NWaiting = Nwaiting An.

This discretization implies the following assumption on the inflow demand. In the
case of a high inflow demand Jjpa0w Or (heavy) congestion just downstream of the
inflow boundary, not all arriving vehicle groups may be able to enter the computational
domain. In this approach, those groups are ‘stored’ and will enter the domain as soon
as it is possible. This implies that even after a decrease in the demand, the actual inflow
may remain at capacity flow for a while. For example, this happens in one of the test
cases in Section 10.5. In our view, this is a realistic inflow model, but other choices
may be made as well. For example, the ‘stored’ groups may be removed after a change
in the demand. This will result in an immediate change in the actual inflow.

10.4.5 Outflow node

The outflow is restricted by a given downstream supply (see Section 10.1.1). The sup-
ply constraint can be active (Goutfiow < gcap) OF Inactive (Cpufiow > Geap)- The spacing
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of the most downstream vehicle group i at the beginning of time step k is computed
using the (in)active supply constraint:

& if Ooutfiow > qcap (10.33a)

= . V(Soutflow) .
Soutflow With Goufiow = — if Oputiow < gcap (10.33b)

Soutflow

~ T

In the second case, the outflow is constrained. We assume that the downstream region
(Since Opyefiow < gcap) 18 in congestion and thus (10.33b) has a unique solution. This

spacing is in turn used together with the fundamental relation to calculate the velocity
vf, which then leads to the new position of vehicle group i using (10.31).

10.4.6 Diverge node

At a diverge (one to two node) the turn fraction « is used to determine to which out-
going link a vehicle group will travel. Therefore, each time step either all vehicles go
to one link, or they all go to the other link. As a result, on the time scale of one time
step the turn fraction realized by the discrete model is always O or 1. However, the
goal is to reproduce the turn fraction on a larger time scale of many (say, at least 10 or
20) time steps. Therefore, each time step the actual turn fraction of the last M vehicle
groups is calculated:

oMo — number of groups out of the last M groups that travelled to link b
L=
Mg

(10.34)

If this is below the prescribed turn fraction o, the next group i travels to link by,
otherwise the next group travels to link b;. Once it is known to which outgoing link

a vehicle group will travel, the distance between the position of the last group in the
k

outgoing link at xf.il and the current position x; is used to calculate the spacing: sé‘ =
(x* | —x |)/An. In turn, the spacing is used to calculate the velocity v¥ (using the

fundamental relation) and the new position (using (10.31)).

For this method to work properly, the value of My has to be chosen appropriately.
The appropriate value of M, depends largely on the value of the turn fraction, on how
accurately it needs to be reproduced and on possible changes in the turn fraction and
how quickly the simulation should react. For example, if the turn fraction is 1/2 and
does not change, My = 1 would suffice, just as any other odd valued My. However,
if the turn fraction can be written as an irreducible fraction with a large denominator,
M, needs to be large. For example, if a; = 23/100 we need My = 99 to reach this
turn fraction numerically. However, if it would suffice to have a realized turn fraction
of afw‘” = 1/4, then My = 3 would suffice. Furthermore, the value of My should not
be too large in order to allow for quick adaptation if the turn fraction o changes over
time.

We note that it is not necessary to take explicitly into account the FIFO rule and the
delay by vehicles going to another (congested) link. Unlike in the minimum supply
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demand method, the approach proposed above takes this delay into account naturally.
Furthermore, it is relatively straightforward to replace the turn fractions by routes.
In that case each vehicle groups that enters the network gets assigned a certain route
which describes which link to take at the diverges. This adaptation is much more
complicated to apply in the minimum supply demand method. In Section 10.5 we
show the influence of the choice of M on the realized turn fractions in a simple test
problem.

10.4.7 Merge node

In the discretization approach we use the merge priority ratio y to determine whether
or not a vehicle group from one of the two incoming links can continue on the outgo-
ing link. Therefore, first it is determined which of the two most downstream vehicle
groups should get priority over the other. Without loss of generality, let us assume that
the vehicle group from incoming link a; (iy,) has priority over the vehicle group from
the other incoming link (is,). We will discuss later how to determine which group has
priority. Secondly, the available space upstream and downstream of the node is distrib-
uted over the most downstream vehicle groups in the incoming links. The distribution
is illustrated in Figure 10.4 and described in more detail hereafter.

The available space d (in meters x number of lanes) upstream and downstream of the
node is computed:

dal = (xnode —X]-(

lal

)La1 , dag = (xnode - xk

1‘12

Lay, dp= (X}, —Xnode)Lp (10.35)

with xf the position of the most downstream group at incoming link ay, x
al

iy the posi-
tion of the most downstream group at incoming link a,, and xfh the position of the most
upstream group at the outgoing link, see Figure 10.4(a). The available space (10.35) is
now distributed over the incoming vehicle groups i,, and i,,. Therefore, the following

rationale is applied:

1. Each vehicle group gets at least all the available space at its own link.

2. The vehicle group with priority gets at least critical spacing, if the available space
permits.

3. The vehicle group without priority gets all remaining space.

This leads to the following:

X max (dq, , min (Anscric g, , da, +dp
Siar = (e <AnL o2y 1)) (10.36a)
da da d _A La i,a
g = daFdotds — AnlaSia)) (10.36b)
“2 AnL,,

with s¢ri¢ 4, the critical spacing (per lane) at the incoming link with priority a;. Thirdly,
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(a) Available space per link: distance between
vehicle group and node.
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Siap = An = Scrit

e ——1—> )

>
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priority is close node and downstream group is far
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(b) Distribution of available space if group with
priority is far from node.

a
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@ < Serit
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(d) Distribution of available space if group with
priority and downstream group are both close to
node.

Figure 10.4 Available space per incoming and outgoing link and its distribution over
both incoming vehicle groups during one time step. The distribution depends on the
proximity to the node of the most downstream vehicle group at the incoming link with
priority (here link ay ) and the most upstream group at the outgoing link. For readability
we assume that each link has only one lane and the same fundamental relation.

the spacings (10.36) are used to calculate the velocities vé" al and vﬁ ” (using the funda-

. I k+1 k41 o
mental relation) and the new positions Xi a; and Xi 4, (using (10.31)).

Finally, we discuss how to determine which of the vehicle groups gets priority (group
i, in the example above). This is calculated using the actual merge ratio over the last
M, groups passing the node:

M,  number of groups out of the last M, groups that came from link 1
ho= (10.37)
My
If this actual merge ratio is below the prescribed merge ratio (}/iwy < 1), the group
from link a; gets priority, otherwise the group from link a, gets priority. The value of
M, can be chosen on similar grounds as the value of My: not too small to allow for
an accurate approximation of the desired turn fraction, and not too large to allow for
quick adaptations. In Section 10.5 we show the influence of the choice of My on the
realized merge rates in a simple test problem.
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Figure 10.5 Test layout initial and boundary conditions.

10.5 Simulations and results

We perform simulations to compare the node discretization methods both in the mini-
mum supply demand method and the upwind method. The simulation results for both
methods are compared to each other but also to the analytical solution. Because we
compare to the analytical solution we only do simulations of simple test problems
for which the analytical solution can be obtained relatively easily using shock wave
theory. Therefore, we do not include numerical methods for multi-class nodes in the
comparison.

10.5.1 Test setup

We study four different test cases with different road layouts. The tests are designed
such that the numerical solution of all types of nodes and initial and boundary con-
ditions can be studied separately. In all tests the model parameters are taken equal to
the model parameters in Chapter 8. Table 8.1 shows these parameters of the funda-
mental relation per lane. At locations where there are multiple lanes the fundamental
relation parameters are scaled accordingly. Furthermore, the numerical parameters are
the same as in the base case in Chapter 8 and 9: grid cell size Ax = 100 m and time
step size At = 3 s. The vehicle group size depends on the number of lanes. It is chosen
such that the CFL-condition is satisfied exactly, which implies An = 5 vehicles in two
test cases (initial and boundary conditions and spatio-temporal change in fundamental
relation) and An = 7.5 in the other two test cases (diverge and merge). To study the
influence of the resolution, we repeat the simulations with higher resolution: time step
size At = (.6 s and vehicle groups size such that the CFL-condition is satisfied exactly
(u = 1). We discuss the setup of each of the test cases below.
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Figure 10.6 Test layout change in fundamental relation.

Initial and boundary conditions

The first test is designed to assess the numerical implementation of initial and boundary
conditions, see Figure 10.5. It consists of a three lane road with inflow boundary at
x = Xo = —1000 m and outflow boundary at x = X, = 1000 m. There is one jump in
the initial conditions at x = X; = 0 m and one jump in the outflow boundary conditions
att = T = 500 s. The inflow boundary conditions are constant. The simulation starts
att = Top = 0 s. The following values are used:

3 .
3 Perit = 0.05veh/m  if x < X
p(r,Ty) = { 2Pt vewm mas A (10.38a)
12peit = 0.4veh/m  if x > X
Oinflow (X0,7) = p(Xo)v(p(Xo)) = 1.35veh/s (10.38b)
Xo)v(p(X2)) =0.83veh/s ift < Ty
Ooutflow (X2,1) = p(X2)v(p (X)) . (10.38¢)
Ycap = 2.08 veh/s ift>T)

The values of the initial and boundary conditions are chosen such that the downstream
part of the domain (x > X)) is initially congested and the outflow is restricted during
the first part of the simulation (until # = 77). This results in a congested area that
travels upstream and reaches the inflow boundary conditions. Furthermore, because of
congestion just downstream of the inflow boundary, the actual inflow is lower than the
inflow demand. Therefore, even after the congestion has solved, the inflow will remain
high (at capacity) for some time. Figure 10.9 shows the analytical solution, together
with the numerical solutions, which will be discussed later.

Change in fundamental relation

The second test is designed to assess the numerical implementation of a change in the
fundamental relation, see Figure 10.6. It consists of a three lane road. However, part
of one lane (between x = Xy = 0 m and x = X; = 1000 m) is not used during a certain
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Figure 10.7 Test layout diverge.

time period (between ¢t = 77 = 100 and t = T, = 400 s). The initial density is constant:
p(x,Ty) = ?Tpcrit = 0.075 veh/m. The road length upstream and downstream of the
lane drop are high such that the boundary conditions do not influence the solution. The
simulation starts att = Ty = 0 s.

The value of the initial condition is chosen such that the three lanes can accommodate
all demand and there is no congestion. However, congestion is created when the num-
ber of lanes changes to two. Congestion spills back and dissolves again after all three
lanes become available again. Figure 10.10 shows the analytical solution, together
with the numerical solutions, which will be discussed later.

Diverge

The third test is designed to assess the numerical implementation of a diverge, see
Figure 10.7. It consists of a two lane road with a one lane off ramp that bifurcates from
the main road at x = Xy = 0 m. The turn fraction changes during the simulation:

07 ifT <t<T
Oteamp (1) = (10.39)

0.3 otherwise

with 71 = 60 s and 7 = 300 s. The initial density is as follows:

3 .
ZPcrit = 0.05veh/m ifx< X

pmain(xa TO) _ 2pCI‘1t Vi . X 1 (10.40)
0.0285 veh/m if x > X

pramp(x, Tp) = 0.0143veh/m (10.41)

The road upstream and downstream of the ramp and the ramp itself are long such
that the boundary conditions do not influence the solution. The simulation starts at
t=Ty=0s.

The initial densities are chosen such that the density does not change as long as the turn
fraction is constant. Furthermore, during the first simulation period (until # = 77 = 200
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s) the whole computational domain is in free flow. However, after the change in the
turn fraction at t = T, the off ramp can not accommodate the demand anymore and
congestion sets in. Congestion spills back on the main road, also blocking vehicles that
do not want to take the off ramp. After the turn fraction has returned to its original value
at t = 7 = 1000 s, the congestion dissolves again. Figure 10.11 shows the analytical
solution, together with the numerical solutions, which will be discussed later.

For the upwind discretization of the node we need to choose a value M (see Section
10.4.6). We try four different values: ‘very small’ My = 2, ‘small” My = 5, ‘normal’
My =10, ‘large’ My = 20.

Merge

The fourth, and last, test is designed to assess the numerical implementation of a merge,
see Figure 10.8. It consists of a two lane road with a one lane on ramp that merges at
x = X = 0 m. Initially, there is a high density region on the ramp just upstream of the
merge until x = Xy = —6000 m. Further upstream, the initial density is low. The merge
ratio iS Ymain = 0.6. The initial densities are as follows:

1.2p¢t = 0.04veh/m  if x < X
Pmain <x7 TO) = . (10.42a)
2Pt = 0.067veh/m  if x > X

Pramp(X,Tp) = (10.42b)

0.90¢:it = 0.03veh/m if x < Xy
0.1p¢rit = 0.0033 veh/m  if x > X

The main road upstream and downstream of the merge and the ramp itself are long
such that the boundary conditions do not influence the solution.

For the upwind discretization of the node we need to choose a value M), (see Section
10.4.7). We try four different values: ‘very small’ My = 2, ‘small’ My =5, ‘normal’
My =10, ‘large’ M, = 20.
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The initial density is chosen such that the total flow over the upstream main road and
the flow over the ramp is larger than the capacity of the downstream main road. There-
fore, congestion will set in upstream of the merge. However, the inflow from the ramp
is lower than the initial ramp flow. It is chosen such that the congestion will dissolve
again. Figure 10.12 shows the analytical solution, together with the numerical solu-
tions, which will be discussed later.

10.5.2 Simulation results

All simulation results are shown in Figure 10.9-10.15. The same patterns can be ob-
served in the results of the tests with normal numerical settings (initial and boundary
conditions (Figure 10.9), change in fundamental relation (Figure 10.10), diverge (Fig-
ure 10.11) and merge (Figure 10.12 and 10.13). Both the solution with the minimum
supply demand method and the upwind method are in general in accordance with the
analytical solution. Furthermore, most results with high resolution (not shown) are
closer to the analytical solution, which indicates that the numerical solution converges
to the analytical solution. However, high resolution does not lead to more accurate
results in the merge test case with upwind method. This is discussed in more detail
later.

In the solution obtained with the minimum supply demand method there is some nu-
merical diffusion. We have already discussed this type of numerical inaccuracy in
Chapter 8 for homogeneous links. We conclude that it is not specific to the numerical
methods for nodes.

In the solution obtained with the upwind method some oscillations can be seen: at the
boundaries and in some regions within the domain, e.g., region ‘A’ in Figure 10.9(b),
regions ‘D’ and ‘E’ in Figure 10.10(b) and most regions in Figure 10.11(b), 10.11(d),
10.12(b), 10.12(d). Closer observation shows that the oscillations emerge at the inflow
boundary and at positions where there is a change, such as a change in the fundamental
relation or a merge. They travel either upstream or downstream with the characteris-
tics. However, the waves that form the boundaries between 2 regions travel with the
correct velocity. For example, the upstream front of congestion is (almost) at the same
location in the numerical solution as in the analytical solution. This indicates that ‘on
average’ the flow in the region that exhibits oscillations is equal to the analytical flow.
Furthermore, Figure 10.13 shows that increasing the resolution, leads to narrower and
less pronounced oscillations. This indicates that the oscillations are a numerical arte-
fact. However, with high resolution the numerical wave velocities do not improve:
the slope of the numerically computed boundary between region F and G and, respec-
tively, F and H remains unequal to the slope of the dashed line indicating the analytical
boundary. Finally, we note that these oscillations are very similar to the oscillations
that can be observed in the simulation of moving bottlenecks in the Eulerian coordinate
system, such as in (Laval & Daganzo, 2006).
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Figure 10.9 Simulation results boundary conditions. Colors indicate vehicle velocity.
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Figure 10.10 Simulation results spatio-temporal change in fundamental relation. Col-
ors indicate vehicle velocity.
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Figure 10.11 Simulation results diverge. Colors indicate vehicle velocity.
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Figure 10.13 Simulation results merge, upwind method with My, = 10, high resolution
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Figure 10.14 Turn fractions realized in the diverge test problem, with different numer-
ical methods and numerical turn fraction parameters M.
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Figure 10.15 Merge ratios realized in the merge test problem, with different numerical
methods and numerical merge ratio parameters My.
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In the diverge and the merge test problem we also study the realized turn fraction
and merge ratio, respectively. The results are shown in Figure 10.14 and 10.15. The
realized turn fraction and merge ratio with the minimum supply demand method are
equal to the prescribed values. However, with the upwind method, the realized values
depend on the number of previous groups that is taken into account when determining
which outgoing link the next group will take (M) or determining which incoming
link will get priority (M,). The figures show that with high values (My = 20, M, = 20)
there is a delayed response. This also influences the time it takes before congestion
is dissolved. With low values (My = 2, My = 2) the realized turn fractions and merge
ratios are not accurate. Intermediate values of My = 5, My = 10, My = 5 and M, = 10
give the most accurate results.

10.6 Discussion and conclusions

In this chapter we have studied node models and their numerical implementations.
Node models in Eulerian coordinates for mixed-class kinematic wave models form the
basis of our node models in Lagrangian coordinates and multi-class node models. The
derivation of the node model in Lagrangian coordinates includes an intuitive interpre-
tation of the sink and source terms. The multi-class node models are discretized based
on the minimum supply demand method. The discretization of the node models in
Lagrangian coordinates is based on the upwind method. Until now only simple nodes,
with at most two incoming and two outgoing links have been studied, including inflow
and outflow boundaries. The methods may be extended to more generic nodes.

Simulations show that the discretized node models yield accurate results and largely
agree with analytical results. However, oscillations are created in the upwind node dis-
cretization. They do not influence wave velocities of the primary waves (e.g., velocity
with which congestion spills upstream and with which it dissolves again). However,
they may be interpreted wrongly, for example as stop and go waves. Therefore, meth-
ods should be developed to smooth out the oscillations or to prevent their creation.
The discretization may be improved further by including intermediate time steps and
or disaggregating and re-aggregating vehicle groups as described in Section 10.4.1 and
10.4.2. Alternatively, ideas about hybrid models and their micro-macro and macro-
micro interfaces may be applied to improve the discretization methods (Bourrel &
Lesort, 2003; Burghout et al., 2005; Leclercq, 2007a; Laval & Leclercq, 2008). For
example, applying the Green-Riemann formula can be applied in a similar way as in
(Leclercq, 2007a) to discretize the nodes differently and find a more accurate solution.
Finally, Jin & Zhang (2013) propose a new approach to diverges which lead to more
accurate solutions in the Eulerian coordinate system. Their approach may be extend to
the Lagrangian coordinate system.

Advantages of the upwind method for nodes include the more natural introduction
of rules for turn fractions and priority taking at merges. Furthermore, extensions of
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the method to include routes are more straightforward than with the minimum supply
demand method. Moreover, upwind methods for nodes are needed for simulation tools
which apply the upwind method on links. In Chapter 8 and 9 we have shown that
the upwind method for homogeneous roads has many advantages compared to the
minimum supply demand method. Therefore, further development of the node models
and their upwind discretization proposed in this chapter is valuable.

Other future research includes node models for multi-class kinematic wave models. We
have described the discretization of simple multi-class nodes in Eulerian coordinates.
Our colleagues are working on similar models for more generic nodes (Smits et al.,
2012) and on the discretization of multi-class nodes in Lagrangian coordinates (Yuan
et al., 2012, in press). These methods may be tested using similar simulation studies
as presented in this chapter.






Chapter 11

Conclusions

The goal of this last chapter is to summarize the main findings of the dissertation and to
give an outlook for future research. The context of this dissertation is the development
and analysis of a traffic flow model suitable for traffic management of networks with
heterogeneous vehicles and drivers. After the literature review we conclude that a
multi-class kinematic wave model is suitable for this goal. Furthermore, the application
calls for efficient simulation methods, which are developed as well.

The outline of this chapter is as follows. In Section 11.1 we summarize our main
findings and conclusions. We discuss applications, including scientific recommenda-
tions and practical implications in Section 11.2. Finally, Section 11.3 outlines future
research directions.

11.1 Main findings and conclusions

In this section we summarize our main findings and conclusions. We follow the
structure of this dissertation by first discussing the findings related to the model tree,
secondly, the model development and analysis, thirdly, the Lagrangian coordinate sys-
tem and finally we discuss the findings related to the numerical methods.

11.1.1 Traffic flow modelling

In Chapter 2 we introduced a model tree, see also Appendix A. The tree shows how
traffic flow models have developed into four families since they were first introduced
in the 1930’s. The family of fundamental relations does not include traffic dynamics,
whereas the micro- meso- and macroscopic models describe how traffic states evolve
over time.

Furthermore, the model tree shows the state of the art in traffic flow modelling and
current trends, including:
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e Convergence of certain branches towards a generalized model. The generalized
model can be used to analyze qualitative properties of all models within that
branch (Wilson, 2008; Hoogendoorn & Bovy, 2001a; Del Castillo, 2012; Van
Wageningen-Kessels et al., 2011b).

e Extensions and adaptations of the kinematic wave model to better reproduce
key phenomena such as capacity drop, hysteresis and scattered fundamental dia-
grams (Zhang, 1999; Lebacque, 2002; Wong & Wong, 2002).

e Introduction of multi-class versions of previously developed models (Hoogen-
doorn, 1999; Bagnerini & Rascle, 2003; Ossen & Hoogendoorn, 2006), and es-
pecially multi-class kinematic wave models (Wong & Wong, 2002; Benzoni-
Gavage & Colombo, 2003; Chanut & Buisson, 2003; Zhang et al., 2006; Laval
& Daganzo, 2006; Ngoduy & Liu, 2007; Logghe & Immers, 2008; Van Lint
et al., 2008; Nair et al., 2012).

e Combining microscopic and macroscopic models into hybrid models (Bourrel &
Lesort, 2003; Leclercq, 2007a; Moutari & Rascle, 2007).

In this dissertation we add a new model to the tree that combines these trends. Further-
more, we conclude that the development of a multi-class kinematic wave model can
yield a model with the required computational efficiency.

11.1.2 Multi-class traffic flow modelling

Chapter 3, 4, 5 and 7 are devoted to multi-class kinematic wave traffic flow modelling.
They consist of the development and application of a theoretical framework for multi-
class kinematic wave traffic flow modelling. The framework is introduced in Chapter
3 and consists of a set of principles and a set of requirements. We conclude that the
principles applied in the LWR model can be adapted in order to be applied to multi-
class models. The principles are used in the development of our multi-class kinematic
wave traffic flow model Fastlane in Chapter 4. Fastlane uses the concept of passenger
class equivalent (pce) values. We show that a simple safe-distance car-following model
can be applied to make the pce-values state dependent. We conclude that this leads to
a consistent model.

Fastlane is further generalized in Chapter 5. We show that only a few adaptations
are necessary to generalize the model such that any single-pipe multi-class kinematic
wave traffic flow model known from literature (Wong & Wong, 2002; Benzoni-Gavage
& Colombo, 2003; Chanut & Buisson, 2003; Zhang et al., 2006; Ngoduy & Liu, 2007;
Logghe & Immers, 2008; Van Lint et al., 2008; Van Wageningen-Kessels et al., under
review; Nair et al., 2012) is contained in the generalized model. We conclude that all
models (implicitly) contain the following four elements:
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e (lass specific conservation of vehicles equations.

e Definition of class specific flow.

e (Class specific fundamental relations expressing the class specific velocity as a
function of the effective density.

e An effective density function.

The effective density function aggregates all class specific densities into one variable.
We find that the (implicit) specifications of the effective density functions vary largely
amongst the existing models. This is in contrast to the fundamental relations, which
mostly follow traditional shapes.

Finally, the requirements are used to assess multi-class kinematic wave traffic flow
models in Chapter 7. Therefore, we use the Lagrangian formulation of the generalized
model which is introduced in Chapter 6, see Section 11.1.3. The requirements relate to
qualitative properties of the models such as nonincreasing density-velocity fundamen-
tal relations and anisotropy. We find that there are only two models that satisfy all our
requirements unconditionally: the model by Chanut & Buisson (2003) and Fastlane.
We conclude that other models do not satisfy the requirements or only satisfy them if
certain parameters are chosen appropriately. Finally, a step-by-step-plan is introduced
to assess any future multi-class kinematic wave model with respect to the requirements.

11.1.3 Lagrangian coordinates

Chapter 6 is the core chapter of this thesis. It reformulates the generalized multi-class
kinematic wave model into the Lagrangian coordinate system. This coordinate system
moves with the vehicles, unlike the traditional Eulerian coordinate system which is
fixed in space.

We show that the main advantage of the Lagrangian coordinate system relates to the
direction of information. In any kinematic wave traffic flow model it is assumed that
vehicles and drivers only react on their leaders and not on their followers. Therefore,
characteristics carrying information travel either with the vehicles, or from one vehicle
to its follower. In the Lagrangian coordinate system this leads to characteristics with
nonpositive velocities, while in the Eulerian coordinate system characteristics may
have positive velocity (in free flow) or negative velocity (in congestion). We conclude
that this advantage of the Lagrangian coordinate system can be exploited in two ways:

e It enables the eigenvalue analysis which is needed to qualitatively assess multi-
class kinematic wave models (Chapter 7).
e [t leads to more efficient numerical methods (Chapter 8—10).

11.1.4 Numerical methods and accuracy measures

In Chapter 8-10 we develop numerical methods to solve the (continuous) model equa-
tions that are introduced in the first part of this dissertation. In Chapter 8 we discuss
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four different numerical methods for mixed-class models:

e The minimum supply demand method.

e The upwind method with explicit time stepping.
e The upwind method with implicit time stepping.
e The variational method.

The first method is applied to the model in Eulerian coordinates, the other methods to
the model in Lagrangian coordinates.

To measure the accuracy of the numerical methods, we develop two novel measures:
diffusion error and phase error. The diffusion error measures how much smoother the
numerical solution is when compared to the exact solution. The phase error compares
velocities in the numerical solution with velocities in the exact solution. For example,
it compares the velocity with which congestion spills back upstream in the numerical
solution with its velocity in the exact solution. We find that the solution of the upwind
method with explicit time stepping is more accurate than the other solutions. The
traditional minimum supply demand method leads to relatively large diffusion and
phase errors. The upwind method with implicit time stepping is less accurate but
allows for much larger time steps, which may be an advantage if computational time is
very important. The variational method can lead to very accurate solutions, but only in
certain settings mainly involving a piecewise linear fundamental relation. Therefore,
we study the upwind method with explicit time stepping further.

The upwind method with explicit time stepping (or upwind method, for short) and
the minimum supply demand method are extended for multi-class models in Chapter
9. Similarly to the numerical methods for mixed-class models, we conclude that the
multi-class upwind method is more accurate than the multi-class minimum supply de-
mand method.

The upwind method and the minimum supply demand method are extended for net-
works in Chapter 10. Therefore, we develop numerical methods for (simple) nodes.
From simulation results we conclude that nodes are more accurately discretized using
the minimum supply demand method than with the upwind method. However, we also
show that certain elements in node models, such as turn fractions and routes, can be
included in the upwind method more naturally.

11.2 Applications and practical implications

In this section we make recommendations for the scientific community and discuss
practical implications of our results.

The Fastlane model is an advanced multi-class kinematic wave traffic flow model. It
allows for a fast and accurate simulation of traffic flow on road networks. Therefore, it
should result in much better traffic flow predictions than the ones resulting from most
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simulation tools that are currently applied in practice. Fastlane is especially suitable
in situations where heterogeneity of vehicles and drivers plays a large role, such as
in and around logistics hubs. Furthermore, the model is well suited to be applied in
traffic management in such areas (Schreiter, 2013) and the model in combination with
its Lagrangian formulation is well suited for efficient traffic state estimation (Yuan,
2013).

If the Fastlane model does not satisfy the criteria of a scientist or practitioner in search
for a model, the step-by-step plan for qualitative model assessment provides an ef-
ficient tool for model selection. It shows how any single-pipe multi-class kinematic
wave model can be analyzed quickly for certain desirable qualitative properties. Only
if the model has these properties may it be worthwhile to further study the applicabil-
ity of the model. This assessment can be performed before the (usually costly) steps
of model calibration and validation. Furthermore, the same plan can be applied dur-
ing the development of any new multi-class kinematic wave model. It shows whether
a model (under development) has desirable qualitative properties. Therefore, it can
indicate whether the model is worthy of further development or whether it should be
changed such that it gains the desirable properties. The plan may also indicate that only
under certain conditions (e.g. parameter values) the model has qualitatively desirable
properties.

Once it is established that a certain model has qualitatively desirable properties, the
next steps are to calibrate and validate the model and numerical methods. In the cal-
ibration and validation, our novel accuracy measures are preferred over traditional
measures such as the root mean square error. In the novel methods, the estimations
or predictions are compared with analytical or high quality numerical solutions (in the
validation of the numerical method) or with (high quality) measured traffic states (in
the case of model calibration and validation). Moreover, the accuracy measures can
be applied to compare estimations and predictions of any type of traffic flow model,
yielding better insight in the applicability of the model. Futhermore, the novel accu-
racy measures also have potential practical implications: they might be applied in the
assessment of data quality and traffic state estimation and prediction methods that are
used in practice.

Finally, scientist and practitioners who apply traffic flow models can take advantage of
the novel numerical methods based on the Lagrangian coordinate system. The efficient
numerical methods can be applied in simulation tools for which computation time
and accuracy are both important. They can be applied for simulation of motorway
networks, both in combination with mixed-class and multi-class methods. The novel
numerical methods yield more accurate and faster simulation results, which makes the
model better applicable, both in real time and off-line. Moreover, they can be applied
within the Fastlane model, but they would also result in superior simulation results if
applied in combination with other models such as the ones that are currently applied
in practice.
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11.3 Future research

In the final section of this dissertation we suggest future research directions. We dis-
tinguish the following research themes: 1) identification of research needs and further
generalization of traffic flow models using the model tree, 2) model development and
analysis, 3) efficient numerical methods and 4) further application and development of
models formulated in the Lagrangian coordinate system.

11.3.1 Model tree to identify research needs

The family tree shows trends and current developments, but it also shows branches
in which developments are not as fast as in others. In this context we identify three
main trends: 1) multi-class models, 2) hybrid models and 3) generalized models. For
example, most branches include multi-class models. However, not all models have
been extended to include multiple classes. The tree shows that there are little or no
multi-class versions of for example cellular-automata models. Moreover, hybrid mo-
dels have been proposed but can be developed much further. Hybrid models are able
to combine advantages of different types of models. Examples of new models include
mesoscopic models combined with micro- or macroscopic models. Existing hybrid
models can be extended to include multiple vehicle classes. Another type of hybrid
models can combine mixed-class and multi-class models. Finally, current generalized
models include many models, but not all. Further generalizations may be needed to
efficiently compare models. These gaps may be filled by future models.

11.3.2 Model development and analysis

We have outlined a consistent set of requirements. However, one can dispute the list
of fundamental relation requirements. For example, it is argued that it is not strictly
necessary that a multi-class model allows free flow velocities to be decreasing. A
scientific debate on the requirements for multi-class kinematic wave models, and in
fact any type of traffic flow model would be useful. Once there is agreement on the
minimal requirements for such models, model developers can focus on the type of
models with the desirable properties. Furthermore, a (new) set of requirements may be
applied in the assessment of a broader range of traffic flow models.

The models are assessed with respect to the requirements using the generalized multi-
class kinematic wave model. It also provides a framework for the development of
new models. The generalized model allows to focus on either improvements in the
fundamental relation or on improvements in the effective density function. Moreover,
any model that is developed within the framework can (relatively easily) be assessed
qualitatively using the step-by-step plan. Furthermore, a valuable extension of the
generalized model is a multi-lane version of the model, which would then also include
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the models by Daganzo (2002); Chanut (2005); Laval & Daganzo (2006). Finally, the
requirements for node models (Tampere et al., 2011; Flotterod & Rohde, 2011) can be
extended to include multi-class nodes.

Further improvements of the Fastlane model can be studied. Currently, the space oc-
cupancy is a linear function of only the velocity. Parameters are gross vehicle length
and minimum time headway. Other space occupancy functions can be thought of, for
example based on more advanced car-following models instead of Pipes’ safe-distance
model (1953). Especially in free flow, the safe-distance model, and thus also the space
occupancy function, is disputable. Including another space occupancy function may
lead to a more realistic model. Other possible extensions of the Fastlane model include
a capacity drop and the introduction of multiple lanes.

In the development of Fastlane a logical next step is to calibrate and validate the model
using experimental traffic data (Schreiter, 2013). Furthermore, other calibrated (multi-
class kinematic wave) traffic flow models may be compared to Fastlane. This would
then yield insight into how our assumptions and modelling choices lead to (signifi-
cantly) different simulation results.

In the calibration and validation of Fastlane, or any other traffic flow model, our novel
accuracy measures can be applied. However, currently, they can only be applied in
situations where it is relatively easy to identify centroids of the density or velocity pro-
file. Therefore, a ‘bump’ in the profile needs to be identified in a reference solution and
linked to a bump in the approximate solution. This may be difficult in more realistic
settings. Developments of techniques which are able to do this or which circumvent
the problem may be useful.

11.3.3 Numerical methods

We have developed efficient numerical methods based on the Lagrangian coordinate
system. An alternative method could be based on an alternative Lagrangian model
formulation Yuan et al. (2011); Yuan (2013). Methods based on this formulation are
supposed to be more efficient in cases with only few vehicles of the reference class.
The advantages and disadvantages are explored by Yuan et al. but could be studied
further using methods that we propose. Futhermore, our results indicate that implicit
time stepping and the variational method may lead to very low computation times, at
the loss of some accuracy. The applicability of those methods can be studied further
(Van Wageningen-Kessels et al., 2010).

Our upwind method for nodes needs some improvements. In Section 10.6 we have
outlined a few approaches to improve its accuracy. Furthermore, the upwind method
for nodes may be extended in order to be applied to multi-class models. Currently, a
lot of research is done in this field and ideas can be taken from e.g., Flotterod & Rohde
(2011); Tampere et al. (2011); Smits et al. (2012); Yuan et al. (in press). Furthermore,
the modelling of nodes in the Lagrangian formulation is equivalent to the modelling
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of moving bottlenecks in the Eulerian formulation. (And vice versa: the modelling
of moving bottlenecks in the Lagrangian formulation is equivalent to the modelling of
nodes in the Eulerian formulation.) Therefore, inspiration for efficient node models in
the Lagrangian formulation may be found in the literature on bottleneck models in the
Eulerian formulation.

11.3.4 Lagrangian coordinate system

We have exploited one advantage of the Lagrangian coordinate system in the model
analysis and numerical methods. The same advantages may be exploited in the con-
text of other types of (traffic flow) models. For example, a Lagrangian formulation of
higher-order models has been proposed (Aw et al., 2002). However, to our knowledge,
no numerical methods have been developed based on this model formulation. Further-
more, the Lagrangian coordinate system may be applied to pedestrian flow models.
This is especially challenging because pedestrians usually walk on two-dimensional
surfaces, while vehicles are restricted to lanes (one-dimensional). For this application
Lagrangian flow models used in fluid flow problems may serve as a source of inspira-
tion (LeVeque, 2002).

Recently, a third coordinate system for the LWR model has been introduced (Leclercq
& Bécarie, 2012; Laval & Leclercq, 2013). In their T-model the goal is to calculate
the time at which a certain vehicle reaches a certain location. We expect that this
coordinate system has similar advantages as the Lagrangian coordinate system. The
model introduced by Laval & Leclercq (2013) can be developed further using similar
approaches as presented in this dissertation, such as including multiple classes.

An other advantage of the Lagrangian coordinate system is its natural relation with
microscopic traffic flow models. In a hybrid model the coupling between the mic-
roscopic and the macroscopic region is relatively simple. At the boundaries vehicle
groups are aggregated (from micro to macro) or disaggregated (from macro to micro).
Leclercq (2009) shows how the capacity drop can be included in the Lagrangian for-
mulation of the LWR model. Both the capacity drop and bounded acceleration are
more straightforward to include in the Lagrangian than in the Eulerian formulation
because of the direct relation between the vehicle velocity and the coordinate system.
These ideas can be further extended to include vehicle and driver heterogeneity.
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Family tree of traffic low models

See next page for the genealogical tree of traffic flow models. Grey lines indicate
descent, black dots indicate publications, black lines indicate that the model has (or
multiple very similar models have) been published multiple times.
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Appendix B

Variational theory applied to the
kinematic wave model

In this appendix we show how variational theory can be applied on the network in Fig-
ure 8.5. The network consists of nodes and waves with velocities wy, wp = w; /2 and
w3 = 0. The waves intersect at nodes with n = iAn and t = kAt, therefore w; = An/At.
At the nodes the position i{‘ of the n = iAn-th vehicle at time t = kAt is calculated with
the minimization problem (8.22), (8.23). We show that the minimization problem in-

deed solves the kinematic wave problem on an infinitely long homogeneous road with
the piecewise linear fundamental relation consisting of three linear parts (8.20), see
Figure 8.4(b) and piecewise constant initial conditions. For completeness we repeat

the minimization problem:

)Zf = min ()Zk_ll + Atry, )?f__lz + 2Atry, )Zf.‘_l + Atrs )

i—

with:
ry = —SjamW1
Fm = Vm —SmWm = § 2 = Verit — ScritW2
3 = Vmax
The fundamental relation is:
(S - Sjam)wl if 5 < Serit
V(S) = n’l}ln (Vm + (S - Sm>Wm) = q Verit + (S - scrit)WZ if seric < 5 <83
with
Verit Vmax — Verit
wp=—— and w)=————"+

Scrit — Sjam Scrit — 83

(B.1)

(B.2)

(B.3)

(B.4)
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vehicle number

Figure B.1 The travel distance of a moving observer from point A to point B can be
computed exactly using Lemma B.1. The diagonal parallel lines are ‘x-trajectories’: at
these lines, the position x is constant. The lemma states that the distance is independent
of the path. In the proof of Lemma B.1 we use that the travel distance from A to B is
equal to the distance from A to C plus the distance from C to B.

and vy =0, 51 = Sjam> V2 = Verit, $2 = Scrit and vy = vimax-

We first observe that the distance traveled by a moving observer is related to the num-
ber of overtakings. Secondly, we relate the number of overtakings to a certain cost. The
third step is to show that this can be applied on a homogeneous road with homogeneous
traffic conditions to compute the velocity and position of vehicle groups. Finally, we
relax the assumption of homogeneous traffic conditions and show that piecewise con-
stant initial conditions are sufficient.

Lemma B.1. Consider a homogeneous road with homogeneous traffic conditions, i.e.
the traffic state (spacing s, velocity v) is the same everywhere in the (t,n) plane. The
distance traveled by a moving observer in the (t,n) plane from point A = (ty,ng) to
point B = (t1,n1) = (to +dt,ny + dn) equals:

D =vdt — sdn (B.5)

Before we give the proof we refer to Figure B.1 for an illustration of the Lemma.
Furthermore, we remark that such a moving observer is not a real traveller or vehicle.
It can move in the (¢,n) plane without any restrictions.

Proof. We note that the distance traveled by the moving observer is independent of
the path. Furthermore, it is equal to the net number of x-trajectories that overtake the
moving observer. Let us assume the moving observer first travels from point A to point
C = (t1,np) and then to point B. The net number of x-trajectories that overtake the
moving observer between point A and point C is vdz. The net number of x-trajectories
that overtake the moving observer between point C and point B is —sdn. Consequently,
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Figure B.2 Fundamental relation with costs r,, and velocity of moving observer 7,.

the net number of x-trajectories that overtake the moving observer between point A and
point B is vdr — sdn and thus the distance it travels is D = vdt — sdn. 0

Let us define the average velocity of the moving observer by 7. Using Lemma B.1 the
distance traveled by the moving observer is:

dt# =D = vdt — sdn (B.6)
Furthermore, we define 7, 7, and 73 as the average velocities of three moving observers
travelling over the network in Figure 8.5:

e 7 is the average velocity of moving observer 1, traveling from xf’l to xf
e 7, is the average velocity of moving observer 2, traveling from xf‘__lz to xf
e 73 is the average velocity of moving observer 3, traveling from xf__ll to xf‘

Applying (B.6), w; = An/Atr and wy = wy /2, we find:

A A
Flzv—sA—’::v—swl, Fzzv—sz—zt:v—s%:v—swz, f=v (B.7)

Lemma B.2. Consider a homogeneous road with homogeneous traffic conditions. In
all permissible traffic states (i.e. with s > sjqm) the velocity of the moving observer is
not larger than the associated costs defined by (B.2):

Fi1<r, h<r, HB<n (B.3)
Furthermore:

ifsi <s<sythenii=ry, ifso <s<s3theniy=r, ifs > s3theniz =r3 (B.9)

Proof. We recall that the cost r,, is the velocity at the intersection with the velocity
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axis of the m-th linear part of fundamental relation, see Figure B.2. Furthermore, from
(B.7) we conclude that the velocity of moving observer 1 can be obtained similarly, see
also Figure B.2(a). This velocity depends on the traffic state (s,v). It is the intersection
with the velocity axis of a straight line with slope wy that also goes through (s,v).
From Figure B.2(a) it can be observed that 7| = r; if s; < s < s, and that #/; > ry in
all other permissible traffic states. A similar procedure is applied to conclude that the
velocities of moving observer 2 and 3 also satisfy (B.8) and (B.9), see Figure B.2(b)
and B.2(¢c) O

Lemma B.3. Consider a homogeneous road with homogeneous traffic conditions.
(B.1) yields the correct vehicle positions at the nodes (k,i) of the network in Figure
8.5.

Proof. We distinguish between the following traffic states: s; <s < 57, 50 < s < s3 and
s > s3. In the first case (s; < s < s2) Lemma B.2 gives:

Xf__]l‘f’Atr] = Xf__]l‘f’Atfl = )Z{(
H=min{ @ F+2Mr, > BP4207 = & (B.10)
Flpary > Flyearn = #
Similarly, in the second case (s> < s < s3) Lemma B.2 gives:
ff__ll +ATF1 > )Zf__ll —I—Aﬁ;l = )Zf
)Ef‘ = min )Efjlz +2Atr, = )Efjlz +2At7) = )zf (B.11)
Xfil—l—Atr‘g > X{-{il—FAtfg, = ~i
And in the third case (s > s3) Lemma B.2 gives:
Flrar > Flaarn = #
F=min{ F 24200 > F242MF = & (B.12)
xi-c_l—f—Al‘rg = Xi-c_l—i—Aﬁg = X
O

We now relax the assumption of homogeneous traffic conditions.

Theorem B.1. (B.1) solves the kinematic wave problem with piecewise linear funda-
mental relation (B.3) and piecewise constant initial condition exactly at the nodes (k,i)
of the network in Figure 8.5.

Proof. The exact solution of the kinematic wave problem (using kinematic wave the-
ory) shows that the spacing is constant between the nodes (k — 1,i — 1) and (k,i),
between (k—2,i— 1) and (k,i) and between (k— 1,i) and (k,i). This is because char-
acteristics may travel at three different velocities: wy, wp and wz. The slope of the
lines connecting the nodes is equal to these velocities. Therefore, Lemma B.3 can be
applied and thus (B.1) solves the kinematic wave problem exactly. ]
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